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Theoretical analyses indicate that aggressive signals should positively
correlate with the signallers’ willingness and abilities to fight. Few exper-
imental studies, however, have tested this prediction. In two experiments
employing distinct, ecologically realistic protocols, we quantified the associ-
ation between aggressive signals and fighting in fruit fly genotypes and
found high positive genetic correlations between threat and fighting (rG=
0.80 and 0.74). Our results add to the growing body of experimental work
indicating that aggressive signals have relatively high informational value.
1. Introduction
Many animals rely on aggression for access to desirable resources and mates.
While such aggression has obvious potential fitness advantages, fighting may
also have severe costs, which range from lost time and energy to wounding and
death [1–3]. The vast majority of aggressive encounters, however, do not involve
fighting. Rather, contenders most often settle confrontations by performing
threat displays, which typically lead to one of the participants retreating [4–6].

Early theoretical analyses readily recognized the difficulty with threat dis-
plays: it pays all individuals including weak ones to threaten others if threat
leads to the challenger withdrawing [7]. The only solution to this theoretical
dilemma was to assume that threat either allows fair assessment of fighting
ability or indicates willingness to escalate into fighting. In the latter case, con-
tenders must use threat reliably in order to avoid costly loss against stronger
opponents. This implies a high positive correlation between threat displays
and fighting abilities [8–10].

While the theoretical challenge may have been resolved, the models on
aggressive signals and fighting inspired critical reassessment [11] as well as
new experiments designed to quantify the information conveyed by aggressive
signals. Some studies examined whether threat displays signalled tendencies
to escalate into fighting [12,13]. Most notably, in a few species of song
birds, soft song was significantly associated with subsequent attack [14–17].
We know, however, of no studies that have examined the genetic correlation
between threat and fighting.

A complementary approach for predicting the strength of association between
threat signals and fighting is to consider likely mechanistic constraints.
One would expect similar genetic, physiological and neuronal mechanisms to
mediate aggressive signals and actual fighting. This could lead to a positive
genetic correlation between threat and combat. Indeed both phenotypic and
genetic correlations among traits are ubiquitous [18–22]. We lack data, however,
about the genetic correlation between threat and fighting.

To further our understanding of the association between threat displays
and fighting, we used fruit flies (Drosophila melanogaster), which are a highly
tractable model system for quantifying aggression. When placed in settings that
allow resource defence, male fruit flies defend attractive food patches both in
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the absence and presence of females. The flies perform well-
characterized aggressive behaviours. The sole, prominent
aggressive signal is wing threat, in which a fly raises his
wings at 45° toward his opponent. Fighting primarily includes
lunging, where the aggressor hits his opponent with his
forelegs, and occasionally more escalated combat including
boxing, where both males rear up on their hind legs and
strike each other with their forelegs; and tussling, involving
the males stumbling over each other [23–27].

One of the unique tools available in fruit flies is the
DrosophilaGenetic Reference Panel (DGRP), a set of sequenced,
fully inbred lines,which has been usedwidely for investigating
the genetic basis of various traits including aggression [28–33].
We thus used a subset of the DGRP lines to test the genetic
correlation between threat and fighting. Both signals of aggres-
sion and fighting itself may vary as a function of the social
context [26,34]. Hence we conducted two experiments, each
assessing threat and fighting in one of two realistic social
settings. In natural sites with small fruits and low to moderate
fly densities, capable males attempt to monopolize fruit
through aggression and mate with females that seek food
and egg laying sites. Sometimes, males and females co-occur
at the fruits, while at other times, males may encounter only
other males at the fruits [27]. We simulated these two relevant
scenarios by allowing males in one experiment to interact with
both males and females but to encounter only males in the
other experiment. In both cases, we predicted a positive genetic
correlation between threat displays and fighting.
1

0 2 4
wing threat, s min–1

6
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g

Figure 1. The genetic correlation between wing threat and fighting among
distinct genotypes in the presence (a) and absence (b) of females. Note the
different trait value ranges between (a) and (b). Each point shows conditional
genotypic means ± 95% CI. The inserts illustrate the arenas with and without
females. Males are identified by the black tip of their abdomen. N = 443
trials with 16 genotypes and 361 trials with 24 genotypes, respectively.
2. Methods
(a) General
We used Wolbachia-free lines from the DGRP [33,35] and housed
them in standard fly vials with 5 ml of our standard food
medium (1 l = 90 g sucrose, 75 g cornmeal, 10 g carrageenan,
32 g yeast and 2 g methyl paraben dissolved in 20 ml ethanol).
We maintained the flies in an environmental chamber at 25°C
and 50% relative humidity on a 12 h light : dark cycle with the
lights turning on at 10.00 h. In order to lessen deleterious
inbreeding effects, we created F1 hybrid flies for the experiments
by crossing males from 24 distinct DGRP lines to females from a
single line (DGRP-83) [36]. To generate the hybrids, we collected
virgin females of DGRP-83 within 8 h of eclosion using light CO2

anaesthesia and housed them in groups of 15 per food vial
sprinkled with live yeast to stimulate egg laying. Once females
were 3–5 days old, we transferred them in groups of eight to
new vials containing food and live yeast and added to each
vial five males of 1–4 days old from one of the DGRP lines. We
transferred these parental flies of the 24 hybrid crosses into
new food vials with live yeast daily, and scraped excess eggs
from the vials to ensure a consistent rearing density across
lines. Eleven days after egg laying, we collected by aspiration
the F1 hybrid flies (hereafter genotypes) within 8 h of eclosion
to ensure virginity and aspirated the focal flies individually
into food vials.

(b) Aggression experiments
We conducted two experiments to assess threat and fighting
under the two realistic settings of males at a food patch that
either has or lacks females. We tested the focal flies when they
were 4 days old within 2 h of the onset of the light period.
This period is associated with the morning peak of fly activity
in most studies [27,37]. Our test arenas consisted of polystyrene
Petri dishes that were 35 mm in diameter and 8 mm high. To
restrict the flies to the floors of the arenas, we coated the walls
and ceilings with Surfasil (Thermo Fisher, Ottawa, Ontario,
Canada). We covered the floor of each arena with filter paper
and placed at its centre a small, circular food patch made of stan-
dard medium. In experiment 1 (females present), the food patch
was 7.5 mm in diameter and 1.5 mm high and coated with a sus-
pension made of 3 g live yeast and 100 ml grapefruit juice. In
experiment 2 (females absent), the food patch was 5 mm in diam-
eter and had at its centre a 3 mm ball of paste made from a
mixture of 5 g live yeast and 10 ml grapefruit juice. On each
test day, we ran 1–4 sets of test trials for each of the genotypes
with the order of genotypes randomized and counterbalanced.
Experiment 1 included 16 DGRP genotypes and 443 trials (25–
30 replicates per genotype). In experiment 2, we increased the
number of DGRP genotypes to 24 and had a total of 361 trials
(14–16 replicates per genotype).

In experiment 1 (females present), we aspirated into each
arena two focal males and a recently mated female. Within
each test arena, we always placed flies of a single genotype
that had developed in distinct food vials to avoid familiarity.
The female had mated once with a same-genotype male just



Table 1. Trait means (response scale), genetic variances, residual variances and heritabilities (latent variable scale).

experiment behaviour trait mean (95% CI) VG (95% CI) Vr (95% CI) H2

females present threats 0.093 (0.033,0.26) 1.30 (0.50, 3.22) 3.3 (2.4, 4.4) 0.28

females present fighting 0.34 (0.12, 0.95) 1.30 (0.52, 3.28) 3.4 (2.7, 4.4) 0.27

females absent threats 1.64 (0.98, 2.77) 1.24 (0.64, 2.50) 1.4 (1.0, 1.9) 0.47

females absent fighting 1.4 (0.89, 2.19) 0.56 (0.44, 1.12) 0.64 (0.46, 0.90) 0.46

3

royalsocietypublishing.org/journal/rsbl
Biol.Lett.19:20220616

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

19
 A

pr
il 

20
23

 

prior to the test. Recently mated females typically do not remate,
and we excluded only two trials owing to mating. Female pres-
ence, however, may alter the dynamics of male aggression
[26,34,38]. In experiment 2 (females absent), we aspirated into
each arena just two focal males of the same genotype. We
allowed the flies 5 min to acclimate and then video recorded
them for 10 min using webcams (Logitech HD Pro C920). After
the experiments, observers blind to fly genotype recorded from
the videos the duration of wing threat and fighting [23,26]
using BORIS, an event-logging software [39]. We recorded
wing threat, which consists of the aggressor raising his wings
at 45° toward his opponent. For fighting, we recorded lunging,
which is the most common component of physical aggression
and characterized by the aggressor making a fast movement
and hitting with his head his opponent. We also recorded less
frequent elements of fighting including holding, in which the
aggressor uses his forelegs to grasp his opponent; boxing,
where both males rear up on their hind legs and strike each
other with their forelegs; and tussling, involving the males stum-
bling over each other (see [27], electronic supplementary
material video S1 0:51). In the females-present experiment,
males spent some time pursuing the females, which, theoreti-
cally, could reduce their time available for aggression. We
nevertheless reported the total time males devoted to threat
and fighting in order to avoid potential biases.

(c) Statistics
We analysed the data with R v. 4.0.2 [40]. We used tidyverse
v. 1.3.2 [41] to organize data and generate figures, and con-
structed generalized linear mixed-effects models (Tweedie
distributed with a log link) using glmmTMB v. 1.1.4 [42]. We
visually examined the distributions of raw data and used the
DHARMa package v. 0.4.5 [43] to aid in model diagnostics.
Each model included threat duration and fighting duration as
dependent measures, and genotype, day, and trial indentification
(ID) as random effects. See the electronic supplementary material
for further details.

Broad sense genetic variance (VG = 2*VDGRP), genetic corre-
lations (rG), and heritabilities (H2) were extracted and computed
from estimates directly from glmmTMB. We multiplied the
among-DGRP hybrid variance component by 2 to account for
the shared maternal line of the DGRP hybrids. We reported
broad sense heritabilities because our protocol, in which we
crossed males from all lines with females from a single line, did
not allow us to exclude non-additive genetic effects. H2 was esti-
mated as VG=(VG þ VE) ¼ 2s2

l = (2s2
l þ s2

e), where VG is genetic
variance, VE is environmental variance, s2

l is the among-DGRP
hybrid variance component, and s2

e is the error variance [44–46].
Trial level varianceswereusedasaproxy for residual variances. Esti-
mating quantitative genetic parameters for complex generalized
linear mixed models (with respect to the scale of the latent variable
versus the data scale) remains challenging for situations such as
semi-continuous, ‘zero-inflated’ positive-valued data, as observed
here. As such we only include these estimates on the latent variable
scale, which will have higher estimates of H2 relative to the original
data scale due to the impact of exponentiation back to the response
scale [47,48]. Data and code to reproduce analyses are available at:
https://doi.org/10.6084/m9.figshare.21565722.v1 [49].
3. Results
In the experiments with (figure 1a) and without (figure 1b)
females, there were relatively high genetic correlations (rG)
between wing threat and fighting (rG= 0.80, 95% CI:[0.15,
0.93] and rG= 0.74 [0.25, 0.89] respectively). For both data
sets, we compared full model fits to their corresponding
models constrainedwith rG= 0. These comparisons are consist-
ent with the unrestricted models being preferred for both
experiments (females present: LR =8.75, d.f.= 1, p = 0.003;
females absent: LR = 14.2, d.f. = 1, p = 0.0002;). Broad sense
genetic variances and heritabilities for both threat and fighting
were moderate (table 1).

Whilemales spentmuch less time threatening than fighting
when females were present (threat/fighting ratio = 0.27, with
95% CIs of 0.19–0.39, t =−7.7, p < 0.0001), they spent similar
times on threat and fighting when females were absent
(threat/fighting ratio = 1.18, with 95% CIs of 0.89–1.55,
t = 1.2, p = 0.23, figure 1).
4. Discussion
Our experiments indicated relatively high genetic correlations
between levels of threat and fighting (figure 1). The fact that
threat and fighting are highly positively correlated agrees
with theoretical predictions that signallers should modulate
their threat in relation to their willingness to escalate into
combat. Failure to do so can result in the costly defeat of
weak individuals that signal strength [8–10]. Although fruit
flies do not possess weapons that can inflict injuries, their
fighting is nevertheless costly as it leads to reduced lifespan
[50]. The theoretical predictions, however, implicitly assume
that threat and fighting may vary independently. In reality,
however, there are good reasons to assume that mechanistic
constraints maintain at least a moderate positive genetic cor-
relation between threat and fighting. Genetic correlations,
even between apparently unrelated behaviours, are prevalent
[20,22,51,52]. In the case of aggression, one can readily envi-
sion that the same genetic networks, neural networks and
endocrine mechanisms modulate both threat and fighting.
Finally, while we focused on the durations of threat and fight-
ing, it is possible that other features, such as the tendency to
escalate after threat, or actual ability to win a fight following a
threat may be more informative.

The values of genetic correlations between threat and
fighting in our experiments (0.74 and 0.80) were somewhat
higher than the average of about 0.6 reported for other beha-
viours [20]. While such high genetic correlations may pose a

https://doi.org/10.6084/m9.figshare.21565722.v1
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constraint on the independent evolution of threat and aggres-
sion, previous studies indicate that high genetic correlations
still allow for relatively rapid evolutionary change in one of
the correlated traits [19,53,54]. Intriguingly, a fruit fly study
suggested that one of the five serotonin receptors they pos-
sess, 5HT1a, modulates wing threat, while another serotonin
receptor, 5HT2, modulates fighting [55]. Overall though, we
still do not understand how the few neurotransmitters that
modulate aggression and their multiple receptors orchestrate
threat and fighting [56]. Nevertheless, our results, along with
the rapidly increasing mechanistic knowledge about fruit fly
aggression, open up exciting avenues for future research.
Specifically, given the genetic variation in the threat and
fighting, one can artificially select for lineages of flies that
either display few aggressive signals but eagerness to fight
or vice versa. Then research on the evolved lineages can
assess both the genetic and neurobiological changes in such
flies and their functional effects on social interactions.
All the protocols and tools for such research are currently
available [28,57–59].

Males showed amuch lower ratio of threat to fighting in the
presence than in the absence of females (figure 1). It seems that,
despite the high genetic correlation, males can adjust the ratio
of threat to fighting in response to relevant features of their
social environment. Males spent some time courting females
and less time in both threat and aggression in the presence of
the recently mated females (panels (a) versus (b) in figure 1).
While we cannot explain the difference in threat to fighting
ratio in the females present and females absent experiments,
audience effects on behaviour have been documented in a var-
iety of species including fruit flies [26,34,38,60,61].

In sum, we documented a high positive correlation between
aggressive signals and actual fighting. This opens up exciting
opportunities for further investigations on the mechanistic and
functional bases underlying the association between aggressive
signals and fighting in a leading model system.
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