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SEARCHING FOR CRYPTIC PREY: A DYNAMIC MODEL!

REUVEN DUKkAS AND COLIN W. CLARK
Institute of Applied Mathematics, University of British Columbia, Vancouver, British Columbia V6T 1722, Canada

Abstract.

We present a dynamic model to examine sequential foraging decisions of

predators searching for cryptic prey. We identify key elements of information processing
and ecological factors determining the costs and benefits of two foraging alternatives. On
the one hand, specializing on a single prey type while ignoring other types increases the
distance a forager must move; this involves increased energy and time expenditures. On
the other hand, switching between searching for several prey types has the obvious cost of
an initial reduction in the probability of detecting prey immediately after switching. Switch-
ing also has the less apparent cost of a forager’s reduced ability to assess the probability
of prey presence. We show that if the cost of switching is sufficiently high, and a forager
estimates that one prey type is more common than others, then the forager should search

for this prey only, unless conditions change.

Key words: dynamic programming; foraging; information processing; learning; prey detection;

search patterns; switching.

INTRODUCTION

The foraging patterns of predators searching for
cryptic prey strongly affect populations and commu-
nities of animals and plants (Hassell 1978, Sih et al.
1985, Martin 1988, Crawley 1992). Such foraging pat-
terns are shaped by constraints on the processing of
information by these predators (Tinbergen 1960, Pie-
trewicz and Kamil 1981, Milinski 1990, Dukas and
Ellner 1993, Getty and Pulliam 1993). Therefore, re-
alistic theoretical and empirical understanding of pred-
ators’ search patterns and their dynamics is essential.

Dukas and Ellner (1993) presented a model to ex-
amine how limitations on the simultaneous processing
of information affect searching behavior. Their model
indicates that a forager may be more successful if it
searches simultaneously for items of only a single cryp-
tic prey type while ignoring other cryptic types. How-
ever, Dukas and Ellner’s model assumes that foragers
constantly move through the environment and encoun-
ter new prey. The model does not explicitly address
sequential searching decisions. Nonetheless, recent
studies emphasize that the sequential searching behav-
ior of many predators involves series of pauses and
runs. Searching for, and detection of prey, occurs only
during pauses (Anderson 1981, O’Brien et al. 1990,
Getty and Pulliam 1991, 1993).

A forager that pauses to search for cryptic prey but
does not detect any prey item after a short time can
choose one of three alternatives. First, it may simply
continue pausing and searching for the same prey type.
Second, it may continue pausing, but switch to search-
ing for another prey type. Third, it may move a certain
distance, then pause again and resume search. We pre-
sent here a model to examine the costs and benefits

! Manuscript received 22 November 1993; revised 6 July
1994; accepted 16 August 1994; final version received 7 Oc-
tober 1994.

associated with each alternative, and to predict the op-
timal searching strategy that foragers should employ.
This extension of the model of Dukas and Ellner (1993)
permits a more realistic examination of both the si-
multaneous and sequential problems of information
processing underlying searching behavior.

THE MODEL

We assume that the foraging period is divided into
T short time intervals (r = 1, 2, ..., T); each interval
is long enough to enable the forager to scan its effective
visual field. We also assume that items of a few distinct
and familiar cryptic prey types are randomly distrib-
uted, that the forager can find only a single item of
prey of each type during the same pause, and the *‘pri-
or” probability of encountering an item of any type i,
per time period, while pausing, is p,. Here “‘encoun-
tering” refers to physical proximity, e.g., a prey item
is encountered when it comes' within the visual range
of the forager. The forager then may detect an en-
countered prey item with a probability p,. The proba-
bility of detecting prey is a function of (1) the con-
spicuousness of this prey, defined as the degree of
dissimilarity between the prey and its surrounding
background (Gendron and Staddon 1983, Dukas and
Ellner 1993), (2) the exact distance between the prey
item and the forager during pausing (e.g., Getty and
Pulliam 1993), and (3) the forager’s search rate, defined
as the area searched per unit of time (Gendron and
Staddon 1983, Dukas and Ellner 1993, Reid and Shet-
tleworth 1992). For brevity, we do not elaborate here
on these issues. Rather, we concentrate on the effects
of switching on the probability of detecting cryptic
prey.

Behavioral and physiological studies indicate that
humans and other animals show an initial reduction in
performance after switching between sequential tasks
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(Wickens 1984, Baddeley 1986, Lewis 1986, Anderson
1990, Croy and Hughes 1991). For example, egg-laying
Colias butterflies made 12% more mistaken landings
on plants after a run of foraging on flowers (Stanton
1983). As another example, upon switching from one
floral type to another familiar type, bumble bees (Bom-
bus bimaculatus Cresson) increased initial handling
times by 50-180% (Woodward and Laverty 1992). Af-
ter switching to searching for prey of type i, the forager
may regain its maximum probability of detecting items
of this familiar type within several time intervals. We
let y denote the number of time intervals since the most
recent switching, and use a general learning model
(e.g., Dukas and Real 1993a) to describe the associa-
tion between the probability of detection (p,) and y,

pa=a — be™, (1)

where a is the asymptote, (a — b) is the intercept, and
d is the rate of re-learning. By presenting p, as a func-
tion of number of time intervals, we assume that both
finding and not finding prey are valuable experiences
for the forager. Learning is typically presented as a
function of overall experience, and this seems to be
well justified in our specific case. While locating prey
can clearly enhance subsequent performance, failing to
detect prey may be equally helpful. Such failure can
help the forager to re-learn (1) to ignore non-prey items
that are similar to prey, (2) to search for prey in more
suitable micro-sites, or (3) to attend to another prey
attribute that makes it easier to detect this prey.

The forager’s probability of finding a prey item i
during the first time interval during a pause is therefore
p.ps The probability of finding an item i in any time
interval during a pause can be calculated using Bayes’
theorem (e.g., Berger 1980, McNamara and Houston
1980, Mangel and Clark 1988). First, the probability
of not detecting prey i (even though it is present) during
a pause is

Pr(y, 2) = (1 = py = D)A = ply —2) ...

d = ply — 2, I=z=y (2)

Also Pr(y, 0) = 1, where, as before, y = time spent
searching for prey type i, and z = time spent in un-
successful search for prey i in the current pause (0 =
z = y). Therefore, the probability that prey is present,
given y and z, is

Pr(y, 2)p.

My 9= Pr(y, 2p. + 1 — p, ®

and the probability of finding a prey item is

R(y, 2) = N, DpLY). @

In words, the probability of finding prey in the first
time interval during a pause is an increasing function
of the time spent in the same search mode y (Fig.1;
upper curves). On the other had, if prey is not found
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Fig. 1. The probability of finding a prey item of given
type, R(y, z), as a function of the time spent searching (y) for
this prey type. The upper pair of curves describes R(y, z) for
the first time period during a pause (z = 0); the lower pair
of curves describes R(y, z) for the second time period (z =
1), following an unsuccessful search in the first period. The
rate of re-learning (3) is either 0.1 (broken line), or 0.3 (con-
tinuous line). Other parameter values are: p, = 0.5, a = 1
and b = 0.4.

in the first time interval, the probabilities of finding
prey in the second and subsequent time intervals during
a pause may become decreasing functions (depending
on parameter values) of the time spent in the same
search mode y (Fig. 1; lower curves). Both the rates
of increase and decrease in R(y, z) are larger for larger
values of §, the rate of re-learning.

Evaluating the alternative searching strategies

Based on the above formulas, we developed a dy-
namic optimization model of searching behavior (see
Appendix). Briefly, the model operates as follows. Af-
ter pausing, the forager should always search for prey
during the first time interval. If it does not find prey,
it then may choose one of three alternatives: (1) con-
tinuing to search for the same prey, (2) switching to
search for another prey, or (3) moving. With the pa-
rameter values of d used here, the probability of finding
the same prey in subsequent time intervals during a
pause is low even for moderate values of y (Fig. 1;
lower curves). Therefore, the forager should not con-
tinue pausing and searching for the same prey for long;
rather, it should either move or switch. Moving has the
advantage of keeping a high probability of detecting
prey (Fig. 1; upper curves). However, moving involves
an energetic cost and also expends some time not
searching. On the other hand, switching incurs two oth-
er costs. First, the initial probability of finding prey is
lower. Second, the forager has less reliable information
about the probability of finding prey in the current
pause position because its initial probability of de-
tecting prey is lower. Therefore, after switching, the
forager may spend a longer time pausing and searching
even when prey is not present.
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“switch” strategy for a range of moving
costs (measured as a proportion of the energy
content per prey). The intercept (@ — b) and
rate of re-learning (8) values are (a) 0.6 and
0.1, (b) 0.8 and 0.1, (c) 0.6 and 0.3, and (d)
0.8 and 0.3, respectively. Other parameter
values are: p, = 0.25,a = 1, T = 50.

(d)

2 T , r
0.00 0.05 0.10  0.00 0.05
Cost of moving, ¢,
RESULTS

The optimal search strategy

We define F(x, y, z, t) as the forager’s expected total
energy gain from time ¢ to 7, where x indicates the prey
type the forager is currently searching for, and y and z
are described above. For simplicity, we now consider
only two prey types which are distinct in all their at-
tributes, x = 1 or 2. Given x, y, z at time ¢, the forager
then should choose the strategy that maximizes F(x, y,
z, 1) (Appendix). After finding prey, or after some time
intervals of pause and unsuccessful search, the forager
may either move on and continue searching for the
same prey, or it may continue pausing but switch to
searching for the other prey type. Except for prey pa-
rameters, the optimal strategy is affected by three fac-
tors: the energetic cost of moving (Appendix), the in-
tercept, and rate of re-learning (see Eq. 1). We express
the cost of moving as a fraction of the energy gained
from prey. Such cost may vary among species, and is
also a function of the profitability and density of prey.
We chose 10 values of moving cost (c,,) of 1-10% of
the energy content per prey. These values cover a re-
alistic range of observed parameters (Fedak and See-
herman 1979, Ellington et al. 1990).

The initial reduction in foragers’ abilities to detect
familiar cryptic prey and the rate of increase in prob-
ability of detection after switching have not been quan-
tified experimentally. Based on indirect information
(Pietrewicz and Kamil 1981, Baddeley 1986, Lewis
1986, Woodward and Laverty 1992) we chose two mod-
erate values of 0.2 and 0.4 for the initial reduction in

0.10

probability of detection (b in Eq. 1) and rates of re-
learning of 0.1 and 0.3 per time period (3 in Eq. 1).

Prey types with identical parameter values

First, we consider the simplest case, where the for-
ager encounters two distinct prey types with identical
parameters, i.e., items of each prey type are equally
cryptic and have the same energetic content, handling
time, and density. When the initial cost of switching
is 0.4 (a 40% reduction in probability of detection), the
forager captures more prey if it searches for only a
single prey under most values of moving cost (Fig. 2a).
Here, the gain from keeping the initial probability of
detection high by not switching compensates for both
the cost of moving and the lost opportunity of finding
another prey. On the other hand, a 50% decrease in the
initial cost of switching (from 0.4 to 0.2) makes switch-
ing the optimal searching strategy for the whole range
of moving costs (Fig. 2b). An increase in the rate of
re-learning from 0.1 to 0.3 reduces the overall cost of
switching. Although the initial cost of switching is
identical, re-learning is faster and, thus, the overall cost
of switching is lower. This makes switching the optimal
behavior for the higher range of moving costs when
the initial cost of switching is 0.4 (Fig. 2c¢). However,
increased rate of re-learning has little effect on the
relative benefit of switching when the initial cost of
switching is only 0.2 (Fig. 2d).

Prey types with different density

Next, suppose that prey types have different density,
but share all other parameters, i.e., they are equally
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cryptic and have the same energetic content and han-
dling time. Note that prey density is represented in our
model by the value of p,, the “‘prior”’ probability of
encountering prey. Fig. 3 presents the payoffs for using
either the move or switch strategies for a range of den-
sities of prey type 2, and for an intermediate moving
cost of 0.05. When the initial cost of switching is 0.4,
the forager captures more prey if it searches for only
a single prey (Fig. 3a). Again, the gain from keeping
the initial probability of detection high by not switching
compensates for both the cost of moving and the lost
opportunity of finding another prey. On the other hand,
a 50% decrease in the initial cost of switching makes
switching the optimal searching strategy, but only if
the other prey is relatively abundant (Fig. 3b). Al-
though an increase in the rate of re-learning from 0.1
to 0.3 reduces the overall cost of switching, it has rel-
atively little effect on the optimal searching strategy
(Fig. 3c, d).

DisCcUSSION

The trade-off between the cost of switching
and the cost of moving

The central concept we model here is that sequential
search for cryptic prey involves a trade-off between
the costs of switching and the costs of moving. Some
aspects of this trade-off have been mentioned in pre-
vious theoretical and empirical investigations of for-
aging (Hughes 1979, McNair 1981, Lewis 1986, Waser
1986, Croy and Hughes 1991, Woodward and Laverty
1992, Dukas and Ellner 1993, Dukas and Real 1993a).

SEARCHING FOR CRYPTIC PREY
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Nevertheless, as far as we know, no previous study has
examined an overall analysis of the factors involved.

When items of several prey types are randomly dis-
tributed, searching for one type while ignoring others
increases the distance foragers must move. This has
the obvious costs of increased energetic expenditure
and moving time. On the other hand, switching between
searching for different prey types involves a widely
recognized cost in terms of an initial reduction in the
probability of detecting prey. This reduction also has
a less apparent cost, resulting from the forager’s re-
duced ability to assess the probability of prey presence.
In other words, when the initial probability of detecting
prey is low, the forager cannot know whether it has
found prey because prey is not present, or because the
forager’s probability of detecting such prey is low. On
the other hand, when the initial probability of detection
is high, a forager who does not find prey can quickly
conclude that prey is probably not present.

Another possible cost of switching is partial forget-
ting of information about spatial and temporal patterns
of prey availability and profitability. Such a cost is
irrelevant in our model, which assumes uniformly ran-
dom distribution of prey items of identical quality.
However, in many cases prey distribution is not uni-
formly random, and foragers of many species are able
to adjust their behavior for exploiting patchily distrib-
uted food (e.g., Hassell 1978, Price and Reichman
1987, Dukas and Real 1993b). Therefore, a more re-
alistic model should also account for the forager’s
knowledge about spatial and temporal prey parameters,

(o) (b)

201
move move /
151 switch ——%
o Intercept = 0.6 Intercept = 0.8
) Z Learning rate = 0.1 Learning rate = 0.1
Fic. 3. The number of prey items cap- - 1g
tured while using either the ‘“move” or @
“switch” strategy for a range of densities 3
(probability of encountering prey) of prey % (c) (d)
type 2. The density of prey 1is 0.75, the cost O 20+
of moving is 0.05, and a = 1. See values for 3
intercept and rate of re-learning in Fig. 2. a move move
switch _/
151 switch
Intercept = 0.6 Intercept = 0.8
Learning rate = 0.3 Learning rate = 0.3

10 T T v T T )
0.20 0.30 0.40 0.50 0.60 0.70 0.80

020 0.30 0.40 0.50 0.60 0.70 0.80

Density of prey type 2, p,
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and the effect such knowledge has on the optimal
searching behavior. The theoretical treatment of such
problems might get rather complicated (McNamara and
Houston 1985, 1987, Mangel 1990). Fortunately how-
ever, animals appear to use relatively simple decision
rules which are based on limited amounts of infor-
mation (e.g., Bouskila and Blumstein 1992). Such rules
may be easier to incorporate into future models of
searching behavior.

In our model, we allow the probability of prey de-
tection to increase as a function of time periods whether
prey items are detected or not. In other words, we re-
gard each time period as a trial and take performance
to be a function of the total number of trials. Changes
in behavior due to experience are usually examined in
regard to the entire experience, i.e., the total number
of learning trials. Such trials most commonly include
both successful and unsuccessful attempts. This is done
for two major reasons. First, one loses the unbiased
measure of experience if only positive trials are count-
ed. Second, unsuccessful attempts may be as valuable
or even more valuable than successful attempts. In oth-
er words, one may learn more from a failure than from
success. For our specific model, a failure means not
locating prey; this may result from (1) approaching and
rejecting a non-prey item similar to the prey, (2) not
searching for prey items at the best micro-sites, or (3)
not attending to the best prey attribute which makes it
easier to detect this prey. Experiencing any of these
possibilities is likely to enhance subsequent prey de-
tection. Thus the forager may re-learn to (1) ignore
non-prey items, (2) search in alternate micro-sites with-
in the same locality, or (3) attend to another prey
attribute. Although we believe our above assumption
is well justified, we do not know the relative value of
success and failure for learning. Thus the assumption
remains to be critically tested. At least one study on
“‘search images” suggests that unsuccessful trials have
negative effects on subsequent performance (Gendron
1986). Nevertheless, this proposition must be further
evaluated under well-controlled experimental condi-
tions.

We concentrated here on the problem of prey detec-
tion while assuming that manipulation of prey is trivial.
For many foragers, however, both detection and ma-
nipulation of food items are difficult tasks. Two recent
studies questioned whether increased handling costs
after switching were sufficiently high to explain spe-
cialization (Croy and Hughes 1991, Woodward and
Laverty 1992). Although handling costs alone may not
be adequate, the combination of decreased detection
and increased handling due to switching might be large
enough to justify specialization.

The optimal search strategy

Our model suggests that the most important param-
eter affecting the trade-off between switching and mov-
ing is the initial reduction in probability of finding prey

REUVEN DUKAS AND COLIN W. CLARK
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after switching. A 40% reduction is sufficient to make
specialization on a single prey the optimal strategy un-
der a wide range of moving costs. Similarly, such re-
duction makes specialization on a single prey type op-
timal if other prey types are less common. In other
words, if the cost of switching is sufficiently high and
a forager estimates that one prey type is more common
than others, then the forager should search for this prey
only, as long as conditions do not change.

Ways of evaluating the model

In spite of the ecological importance of searching
behavior, key parameters shaping such behavior have
not yet been quantified. These include the relative costs
of moving and the direct and indirect effects of switch-
ing on the probability of detecting prey. Quantifying
such costs for prey types with a range of conspicu-
ousness values must therefore precede a direct test of
the model. The problem of searching for cryptic prey
with negligible handling is most relevant for birds feed-
ing on cryptic seeds or camouflaged insects. Several
successful experimental paradigms using birds (Pie-
trewicz and Kamil 1981, Reid and Shettleworth 1992,
Getty and Pulliam 1993) may therefore be adopted for
evaluating our model’s parameters and predictions.
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APPENDIX
THE DYNAMIC MODEL

We describe briefly the dynamic programming model used
to obtain the results of this paper. In the model, time is treated
as a discrete variable t = 1,2, ..., T; in a given time interval
t the forager can either scan for prey during a pause, or move
to a new location. We compare the effectiveness of two search
strategies: (1) The ‘‘move’’ strategy, wherein the forager spe-
cializes on a single prey type; if a prey of this type is detected
(and consumed) the forager then moves to a new location and
resumes search; if no prey is encountered after » intervals of
search in a given location, the forager also moves to a new
location. Our model determines the optimal duration of un-
successful search. The alternative strategy is (2) the ““switch”
strategy, in which the forager alternates between two prey
types. Having found a prey of the first type, the forager then
switches to search for the second type (rather than moving
to a new location). Also, after n periods of unsuccessful
search, the forager switches to the second type. Only after
searching for both types does the forager relocate itself.

We refer to a sequence of consecutive time periods during
which the forager continues to search for prey in a given
location as a ‘“‘pause.” Moving between pauses is assumed
to use up one time period ¢.

Three state variables are required in our dynamic program-
ming model (see Mangel and Clark 1988):

X(f) = number of prey types already detected and con-
sumed (or, for the switch strategy, given up hope
of finding) during the current pause,

Y(#) = number of time periods spent in continuous search
for current prey type,
Z(t) = number of time periods spent in unsuccessful

search for current prey type during current pause.

Thus, Y(¢) is incremented by one following a time period ¢
of search for the same prey; Y(¢) is reset to 0 following a
switch in prey type; and Y(¢) is unchanged when moving
without switching. Similarly, Z(z) is reset to 0 following either
a switch in prey type or a move.

Move strategy.—For the move strategy, the forager search-
es only for the best prey type. Thus, X(f) can take on the
values 0 or 1 only. The forager’s fitness function (assuming
the move strategy) is defined as F,(x, y, z, £) = maximum
expected number of prey recovered from period ¢ to T inclu-
sively, given X(¢f) = x, Y(t) = y, Z(t) = z. The maximization
here refers to using the optimal length of time to spend in
unsuccessful search before moving. The fitness function sat-
isfies the following dynamic programming equations:

R(y, 2) if x =

A.l
0 if x *-

I
—

F,xy 2 T) = {

where R(y, z) is the probability of finding a prey item, given
yand z; see Eq. 4. Fort < T

F,(0, y, z, ©) = maximum of:
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(1) continue search:

Ry, 91 + F,(1,y + 1,0, ¢t + )]

+ (1 —-Ry 2)F,0,y+1,z+1,t+1) (A2

(2) move:

F,(0,%0,t+ 1)~ ¢, (A.3)

where c,, denotes the metabolic cost of moving (in units of
prey item value). Also

F,(1L,y z0=F(0,y0,1t+1) - c, (A.4)

Let us describe briefly the logic behind these equations.
Eq. A.1 asserts that the expected number of prey captured in
the terminal period ¢ = T'is just R(y, z), unless prey has already
been exhausted in the current location (x = 1). For ¢t < T, if
the forager chooses to continue searching (Eq. A.2), it will
be successful with probability R(y, z), in which case the num-
ber of food items found equals 1 plus the number expected
from ¢ + 1 on; this latter number is equal to F,(1,y + 1, 0,
t + 1) because in thiscase X(r + 1) = 1, Y¢ + 1) = y + 1,
and Z(t + 1) = 0. Similarly, if no prey is detected in period
t, future expected food recoveries are given by F,(0, y + 1, z
+ 1, ¢t + 1). If the forager chooses to move, then X(z + 1)
=0,Yt+ 1) =y Zt + 1) = 0, leading to Eq. A.3. Finally,
if X(t) = x = 1 (local prey already exhausted), the forager is
forced to move (and not to switch prey type, for the present
case), which leads to Eq. A.4.

Numerical computation of the fitness function F,(x, y, z,
1) is carried out as usual by iteration of these dynamic pro-
gramming equations. These iterations run backwards in time,
starting at + = T; Mangel and Clark (1988) discuss the com-
putational rationale and details of this standard procedure.

Switch strategy.—We consider the simplest case of two
prey types with identical parameter values. After moving, it
is always optimal to resume searching for the same prey type
last searched for (whether successful or not). This is not nec-
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essarily true when searching for prey types with different
parameters. For brevity we omit discussion of the model equa-
tions for this case (Fig. 3). For the switch strategy, X(¢) can
assume the values 0, 1, or 2. The fitness function F(x, y, z
t) is defined as before, and the dynamic programming equa-
tions now become:

Foy, 2 T) = [f)?(y, 2) i;i : (2)0r 1 A5)
and for t < T,
F(0, y, z ) = maximum of:
(1) continue search:
Ry, 2)[1 + F(1,0,0, ¢t + 1)]
+ (1 — Ry 2)F0,y +1,z+ 1,t+ 1) (A.6)
(2) switch to second prey type:
R0, O)[1 + F(2,0,0, ¢+ 1)]
+ (1 — RO, O)F(1, 1, 1, + 1) (A.7)
and
F(1,y, z, t) = maximum of:
(1) continue search:
Ry, 2)[1 + F(2,0,0, ¢+ 1)]
+ (1 —Ry D)F(l,y+ 1,z+ 1,t+ 1) (A.8)
(2) move
F(0,y 0,t+ 1) — ¢, (A9)
Finally
F(2,y,2 1) =F(0,y,0,t+1)—c, (A.10)

These equations are derived by arguments similar to those
used before.



