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Bayesian approximations and extensions: Optimal decisions for small brains
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a b s t r a c t

We compared the performance of Bayesian learning strategies and approximations to such strategies,

which are far less computationally demanding, in a setting requiring individuals to make binary

decisions based on experience. Extending Bayesian updating schemes, we compared the different

strategies while allowing for various implementations of memory and knowledge about the

environment. The dynamics of the observable variables was modeled through basic probability

distributions and convolution. This theoretical framework was applied to the problem of male fruit flies

who have to decide which females they should court. Computer simulations indicated that, for most

parameter values, approximations to the Bayesian strategy performed as well as the full Bayesian one.

The linear approximation, reminiscent of the linear operator, was notably successful, and, without

innate knowledge, the only successful learning strategy. Besides being less demanding in computation

and thus realistic for small brains, the linear approximation was also successful at limited memory,

which would translate into robustness in rapidly changing environments. Knowledge about the

environment boosted the performance of the various learning strategies with maximal performance at

large utilization of memory. Only for limited memory capacities, intermediate knowledge was most

successful. We conclude that many animals may rely on algorithms that involve approximations rather

than full Bayesian calculations because such approximations achieve high levels of performance with

only a fraction of the computational requirements, in particular for extensions of Bayesian updating

schemes, which can represent universal and realistic environments.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Empirical research in the past few decades has established that
most animals, including small-brained insects such as fruit flies
(Drosophila spp), rely on learning to make complex decisions
regarding all major life activities including feeding, predator
avoidance, aggression, social interactions and sexual behavior
(Dukas, 2008; Dukas and Ratcliffe, 2009; Stephens et al., 2007).
Theoretical studies of animal decisions in uncertain settings have
mostly relied on Bayes theorem, which is the most logically
consistent method for incorporating probabilistic information
(Clark and Mangel, 2000; DeGroote, 1970; Kording, 2007;
McNamara et al., 2006). Whereas theoreticians widely agree
about the superiority of the Bayesian method, it is not clear to
what extent animals can execute Bayesian calculations, which are
computationally demanding.

The two major features of the Bayesian method are, first, the
notion of prior and posterior knowledge, and, second, the
representation of that knowledge in terms of probability distribu-
tions that in some way map the environment. By definition,
learning implies that a decision is based on the integration of prior
information and current experience. This means that all animals
that learn exhibit one feature of the Bayesian method. However, it
is still unknown whether the animal brain represents information
as problem-specific distributions such as conditional probability
density functions (Dukas et al., 2006; Knill and Pouget, 2004;
Rodriguez-Girones and Vasquez, 1997). Studies in humans and
other animals suggest that decisions made under uncertainty are
consistent with optimal choices calculated according to Bayes
theorem (Fiser and Aslin, 2002; Kording and Wolpert, 2004;
Valone, 2006). It is not clear, however, whether the nervous
system of any animal can execute Bayesian calculations utilizing
(realistic) probability distributions. That is, it is possible that
animals rely on relatively simple rules when making learning-
based decisions and that such decisions only resemble choices
based on full Bayesian computations.

The possibility that animals rely on simple rules to reach less
than optimal decisions seems especially attractive when we
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consider relatively simple nervous systems such as that of fruit
flies, which consist of only about 200,000 neurons. However, the
approximation and extensions of Bayesian rules we present in this
work are by no means restricted to decisions by small brains.
Students of behavior have indeed considered a variety of simple
decision rules that achieve reasonable performance (Gigerenzer et
al., 1999; Houston et al., 1982; Kacelnik and Krebs, 1985;
McNamara et al., 2006) and there has recently been renewed
interest in revealing the exact computational mechanisms
employed by animals to make decisions (Gold and Shadlen,
2007; Knill and Pouget, 2004; Ydenberg et al., 2007).

There are probably three general approaches for examining
decisions based on Bayesian computations. First, one can merely
compare predictions based on Bayesian models to empirical data
(Kording and Wolpert, 2004; Valone, 2006; van Gils et al., 2003).
Whereas this approach is useful, it does not elucidate either the
actual computation employed by animals or the neuronal coding
that may be involved. Second, one may assume that animals can
execute Bayesian calculations using probability distributions, and
attempt, either theoretically or empirically, to elucidate how
neuronal networks represent the necessary information and
calculations (Gold and Shadlen, 2007; Holmgren and Olsson,
2000; Knill and Pouget, 2004; Kording, 2007; Yang and Shadlen,
2007). Finally, it is reasonable to assume that at least some
animals cannot rely on representations of probability distribu-
tions for Bayesian calculations and instead employ some approx-
imations that are computationally less demanding. Here we take
this approach, which has received relatively little attention.
Specifically, we derive explicit low-order approximations of the
Bayesian strategy and find that the linear approximation performs
exceptionally well compared to the full Bayesian calculations
under a wide range of settings. We present our arguments tailored
for mate choice problems, though we indicate that foraging, for
instance, defines another class of problems where our theoretical
findings can easily be translated and applied to.

The paper is divided into four sections. In the next section, we
present a probabilistic optimization model, develop the concept of
the Bayesian threshold and introduce fitness. We also introduce
observer specific parameters, implement ultra-Bayesian updating
rules, and derive Bayesian approximations. All this is illustrated
for a concrete example—the mating problem of male flies, but
done for unspecified distributions. In Section 3, we construct
concrete probability distributions based on realistic population
dynamical assumptions and apply them to the concepts intro-
duced earlier. We utilize our example for computer simulations,
comparing the Bayesian threshold strategy with its approxima-
tions. The results of these simulations are given in Section 4,
demonstrating the good performance of the approximations,
particularly the linear one. A discussion of our findings concludes
the paper.

2. Bayesian approximations and extensions

The general problem we investigate involves an observer who
has to decide how to respond to individuals of a large population
that are in different states. The state of an individual is
determined by a system variable but cannot be perceived by the
observer without an undesired fitness cost. The observer only
recognizes values of a complementing indicator variable. The
relation between these two variables is directed but vague,
reflecting the nature of the underlying biological processes. The
observer’s learning task is to predict the state of a single,
arbitrarily chosen individual through the information obtained
from interacting with other individuals and representing or, in a

broader sense, understanding the relationship between the
system and the indicator variable.

The standard example we refer to is a mating scenario: if
investigated from the male’s perspective, the female’s state
represents the objective fitness measure and the indicator
variable a fitness estimate perceived by the male observer.
Applications to other scenarios, where our ‘‘individuals’’ represent
food types, food patches or nest sites instead of social partners,
are possible too. The learning mechanism we describe in this
section, which includes conditional decisions and a notion of
fitness, is universal in biology.

2.1. Example, part 1: courtship and mating in fruit flies

The concrete example we will use to illustrate our theoretical
findings is the courtship problem of fruit flies (Dukas et al., 2006).
We start sketching its main biological assumptions and add more
detailed description once the appropriate mathematical language
is developed.

In this example, male flies are the observers who, in their
limited lifetime, attempt to mate with as many female flies as
possible. To this end, they have to court and be accepted as mates
by the females. Courting is costly because it requires time and
does not necessarily lead to mating. Therefore, the males can gain
fitness if they focus their courtship efforts on the class of females
most likely to accept them as mates. An indicator for possible
acceptance or refusal is the pheromone concentration displayed
by a female. The higher the concentration the more likely is the
acceptance.

We assume that male flies can learn the relationship between
the pheromone concentration and female response, keeping track
of a threshold—the pheromone concentration z above which
acceptance is more likely to occur than refusal. The pheromone
concentration is a rough indicator for female fertility with the
exception of young females, whose pheromone concentration may
reach high values before sexual maturity (Manning, 1967). Besides
pheromones, other indicators of acceptance might contribute to
the variable z in a similar fashion. This indicator variable, which
we simply assume to represent sexual attractiveness, conveys
information to males about the likelihood that courting a female
they encounter will be successful. The females’ sexual attractive-
ness, however, changes over time, depending on the state females
are in. For very young females (and shortly after mating) sexual
attractiveness is low. It then increases (again) slowly over time
(modeled mathematically in Section 3). Eventually, we are
interested in studying our observers with respect to different
usage of memory and of a quantity we refer to as innate
knowledge, which represents information about the female
population that cannot be learned through courting. (Simulation
results are presented in Section 4.)

2.2. Decisions based on conditional probabilities

The system variable s, we investigate here, is supposed to
encode two distinct states s 2 S ¼ fU;Vg which, interpreted as the
probabilistic outcome of a revealing act, represent disjoined
events, U \ V ¼ ;, that span a sigma algebra sðSÞ. The values
attained, which are supposed to refer to positive and negative
outcomes, respectively, are disclosed to the observer only after it
makes a costly decision. [The courtship problem represents a
straightforward application which, to ease accessibility and clarify
interpretation of the more abstract terminology, we will keep
indicating in square brackets throughout this section.]

The [male] observer attempts to discriminate between the two
states [of female acceptance or rejection] based on the value of an
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indicator variable, x 2 I ¼ ½0; y�, representing the perceived fitness.
In order to make reasonable decisions there must be a threshold
value z 2 I such that PðVÞXPðUÞ, 8xXz a.s., that is

PðV jxXzÞXPðUjxXzÞ. (1)

If an observation confirms the relation, xXz, a costly act initiated
by the observer [i.e., courting] eventually reveals the value of the
system variable. For convenience, we will refer to both, the
comparing value z of the indicator variable and the conditional
probability p ¼ PðV jxXzÞ associated with the positive event V , as
thresholds. We assume that the correspondence g : I! ½0;1�,
z/p is injective (i.e., 9g�1 : p/zp ¼ z). The complement,
1� p ¼ PðUjxXzpÞ, defines the probability associated with the
event U. Therefore, relation (1) is always fulfilled if pX 1

2, and the
optimal probability q ¼ p for initiating the costly but overall
beneficial act [of courting a promising female] is thus smaller than
1
2.

To determine the specific value, qo 1
2, we need to know the

concrete costs and benefits of learning (investigated in Section
2.3) as well as the probability distributions of the concrete
biological system. The latter would enable us to express the
events X 2 sðSÞ in terms of random variables xX onto the indicator
scale I,

xX�PðxozjXÞ ¼ FXðzÞ, (2)

which are distributed according to conditional probabilities,
defined via cumulative distribution functions, FX ¼ CDF½xX �, over
the threshold z. Despite the stochastic independence of the two
events, V and U, the definitions of the corresponding biological
distributions are usually not independent of each other as we will
demonstrate in Section 3. The learning observer might therefore
be able to consider knowledge of U as being related to knowledge
of V , and vice versa.

Bayes’ theorem is applied to establish the relation, p ¼ gðzpÞ,
resolving the conditional probabilities associated with the thresh-
old zp,

p ¼
PðVÞPðxXzpjVÞ

PðxXzpÞ
. (3)

This is done by expanding the condition (i.e., the denominator)
over the complete set of states (i.e., the two disjoined events),

PðxXzpÞ ¼ PðVÞPðxXzpjVÞ þ PðUÞPðxXzpjUÞ, (4)

and expressing the threshold probability in terms of CDFs as
defined in (2),

gðzpÞ ¼
GV ðzpÞ

GV ðzpÞ þ GUðzpÞ
, (5)

where GV :¼lð1� FV Þ and GU :¼ð1� lÞð1� FUÞ, with l ¼ PðVÞ

reflecting the prevalence of state V and 1� l ¼ PðUÞ likewise
the prevalence of U.

2.3. The Bayesian fitness threshold: costs and benefits of learning

The biological context we investigate is given by the fitness of a
learning observer [the male fly], determined by its overall success
[i.e., the total number of mated females]. The expected fitness
maximum represents an observer’s optimal strategy, although, as
we will discuss in Section 3.3, external factors may have an impact
on the performance of an exclusively probabilistic scheme.

In our abstract formulation, observing an indicator variable,
xXzp, that exceeds the threshold, zp, leads to learning about the
value of the system variables, s 2 S. The process involves one non-
probabilistic fitness component m, which is a cost payable for any
observation [referring to the first encounter of a female], and three
probabilistic fitness components, including a cost n conditional

upon the decision to act [to court], a cost f following success
[acceptance], and an alternative cost c related to possible failure
[rejection]. The expected total fitness, which is expressed as a cost
here as well, adds up to

Ctot ¼ mþ nPðxXzpÞ þ fPðV \ ðxXzpÞÞ þ cPðU \ ðxXzpÞÞ

¼ mþ ðnþ fpþcð1� pÞÞPðxXzpÞ

¼ mþ fþcþ
nþ c

p

� �
GV ðzpÞ.

The final line was obtained utilizing Bayes’ theorem, substituting
expression (3) in terms of

PðxXzpÞ ¼
GV ðzpÞ

p
. (6)

Costs constitute negative fitness components, modeled by the
relative cost of learning subtracted by the benefit of success,
1� fPðV \ ðxXzpÞÞ=Ctot. The total benefit thus reads

Btot ¼
fGV ðzpÞ

CtotðxXzpÞ
(7)

¼
1

fþ c
mf þ

1

f
o
p
þ

1

GV ðzpÞ

� � , (8)

where o ¼ ðnþ cÞ=m. To maximize this function over the thresh-
old candidates (either p or zp), the following cost-related
expression

Crel ¼
o
p
þ

1

ðGV � g�1ÞðpÞ
�

o
gðzpÞ

þ
1

GV ðzpÞ
!min (9)

(denoted in either formulation, and illustrated in Fig. 4A), needs to
be minimized. Therefore, the condition C0relðzqÞ ¼ 0, i.e.,

GV ðzqÞG
0

UðzqÞ � ð1=oþ GUðzqÞÞG
0

V ðzqÞ ¼ 0 (10)

defines the optimal threshold, q ¼ gðzqÞ or zq, if C00relðzqÞ40, i.e., if

GV ðzqÞG
00

UðzqÞ � ð1=oþ GUðzqÞÞG
0

V ðzqÞ40. (11)

(The two conditions, given in terms of GV and GU , are easily
verified by straightforward calculation.) It is safe to assume that
such an optimal threshold,

zq ¼ bðxU ; xV Þ, (12)

exists for concrete distributions of xV and xU (as we have
demonstrated for our standard example in Appendix A.1). We
can conclude that this fitness threshold only depends on costs
expressed by the ratio o, which in addition to the cost required for
disclosing [courting] measures the cost of a possible negative
outcome with respect to the fixed cost. In particular, the threshold
is independent of the payoff from possible success.

The fitness modeling is slightly more general than needed for
our example (Section 2.1), where costs are associated with times
and a negative outcome does not cause an extra cost. The search
time required to encounter a new possible female specifies the
fixed cost m, and the only conditional cost relevant for calculating
the cost ratio o is the courting duration, n, i.e., o ¼ n=m. The
optimization task corresponds to maximizing the relative mating
duration, which characterizes a positive fitness component, or
equivalently, to minimizing the time between mating acts, which
characterizes a relative cost.

Note that male flies cannot learn to optimize the threshold p as
they do not know some intrinsic parameters of the optimization
problem they are facing, e.g., o. However these parameters might
be fitted to the given environment through evolution. Further-
more, note that our model does not incorporate any phenotypic
variation in male quality (e.g., body size, age). Therefore,
calculating the average mating success is only an estimate for
the real-world scenario where typically, only a small proportion of
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males succeed in mating (consequently, far more often than at the
average frequency).

2.4. Realistic observers and ultra-Bayesian updating

In contrast to the threshold optimization, the updating of
parameters will only partially be performed according to Bayesian
rules. We investigate modifications that implement imperfect
memory and innate knowledge, trying to characterize more
realistic observers. These ‘‘ultra-Bayesian’’ modifications, not to
be confused with our approximation strategies, are extensions
that, in our considerations here, span a two-dimensional para-
meter space, where, from a naive perspective, only one point,
which is the case of complete memory without knowledge,
represents the Bayesian approach. It is important to note that the
two external scales define quantities and qualities that constrain
the probabilities relevant for the fitness estimate (cf. Section 3.3).
Incorporated in the probabilistic framework and less naively, the
case of complete memory and total knowledge is then character-
ized as Bayesian, re-identifying the naive as a knowledge-free

Bayesian case. The learning algorithm as outlined here is
illustrated in Fig. 1.

For simplicity, we assume that information captured by the
random variables, xV and xU , can be encoded by two numbers,
v;u 2 I, which then determine the optimal threshold zq ¼ bðu;vÞ.
By utilizing expectation values,

v ¼ EðxV Þ and u ¼ EðxUÞ, (13)

the outcome [success] of an observation (with conditionally
following costly act [of courting]), the nth say, is predicted by the
mean value from the n� 1 prior observations Oi, provided all have
been weighted equally, W ¼ PðOiÞ � 1=n. This statement is based
on the following version of Bayes’ formula (with conditional
expectations),

EðxV Þ ¼
X
ipn

EðxV jOiÞPðOiÞ, (14)

i.e., v � vn � ð1=nÞ
P

ipn xi
V , and similarly for U, where a single

observation approximates its expectation, EðxX jOiÞ � xi
V . Besides

linearity, an equal-weight structure identifies the optimal prob-
abilistic approach. This structure of perfect memory is labeled
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Fig. 1. The flow diagram of the learning algorithm, indicating the locations of Bayesian approximations (red) and extensions (blue). Positive feedback defines success and

increases an observer’s real fitness. In our model, negative feedback does not directly decrease fitness—all the costs are virtual. (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this article.)
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with the attribute Bayesian, but it is commonly known (Kacelnik
and Krebs, 1985) that an updating rule based on real memory and
indices representing time (with i� 1 being earlier than i), is not
necessarily Bayesian (i.e., PðOi�1ÞaPðOiÞ).

Intending to keep the linear structure, the update is performed
as a convex combination. Information from i� 1 observations is
updated after the ith observation returns a value xi 2 I for the
indicator variable and a (possibly undetermined) value si 2

fU;V ;U [ Vg for the system variable (i.e., si ¼ U [ V if no positive
decision has been made),

ui

vi

 !
¼ ðI2miYi

si
Þ

ui�1

vi�1

 !
þ ð1�miYi

si
Þxi, (15)

where I2 ¼ diagð1;1Þ. The observation history is incorporated
through a vector, Yi

si
¼ Dsi

Wi made of a matrix of Kronecker deltas

Dsi
¼

dUsi
dðU[VÞsi

dðU[V Þsi
dVsi

 !
and Wi

¼
Wi

U

Wi
V

0
@

1
A with Wi

r ¼ 1=ni
r

(16)

respecting the frequencies ni
r of the states r 2 fU;Vg counted

during the first i observations, weighting the amount of memory
utilized prior to the ith observation with the value mi

X0. The ith
observation is therefore memorized with a weight reciprocal to
mi. Values, mi41 with mipminfni

U ;n
i
V g, can be used to treat

negligible events. Our memory variable models the long-term
usage of information and may alternatively be characterized as
forgetfulness. The case mi ¼ 1, 8ipn, where the maximal amount
of memory is utilized and nothing is forgotten, identifies the
Bayesian updating rule.

An additional parameter update is performed in order to
implement innate knowledge, which is supposed to reflect
information about the environment [i.e., the female population],
inherited or learned earlier in an observer’s life (which elsewhere
we study for female mate choice, Lange and Dukas, in prepara-
tion), but beyond the ability to be learned when fulfilling the
current biological task [courting]. The environmental information
is assumed to be established through a dependency between the
distributions of xU and xV , given here in terms of a correlation
between the expectation values, i.e.,

9l40 such that v ¼ lu, (17)

which restricts possible combinations of u and v based on the
underlying population dynamics (as we will obtain in Section 3).
Similar to the implementation of memory, we also extend the
Bayesian updating scheme in a linear way,

ui

vi

 !
/LKiL

�1
ui

vi

 !
, (18)

intertwining the estimates for the two variables, u and v, where
the diagonal matrix L ¼ diagð1; lÞ encodes the environmental
constraint. The matrix

Ki ¼
1� ki ki

ki 1� ki

 !
(19)

models a convex combination (Appendix A.2) where the para-
meter ki ¼ lki

2 ½0;1� measures the amount of knowledge ki40
incorporated through the ith observation when respecting the
observed prevalence l � li of states (i.e., PðVÞ � l) in a Bayesian
fashion, e.g., estimated using the thetas in (16),

li
¼

Wi
U

Wi
U þ Wi

V

. (20)

Similar to incorporating memory, the case of ki
¼ 1, 8ipn, forms

the Bayesian update. No knowledge is included if ki
¼ 0, which

implies no extra updating.

2.5. Approximations of the Bayesian fitness threshold

After the variables u and v, the threshold (12) which optimizes
the fitness estimate according to Bayesian principles, as char-
acterized in Sections 2.2 and 2.3, needs to be updated as well. In
addition to the formal update, which is simply given by Bayesian
threshold zi ¼ bðui;viÞ for the updated variables, we consider
approximations of this surface estimated through local expan-
sions. Besides being available through short and universal
calculations, this would enable our observers to represent the
information related with the distributions of the indicator
variables, xU and xV , by just a few numbers. The threshold update
of an nth-order approximation reads

zi ¼
X

0phþjpn

bi
hjðui � ui�1Þ

h
ðvi � vi�1Þ

j, (21)

with coefficients bi
hj ¼ ð1=h!j!Þ@uhvj bðui�1;vi�1Þ, which, except for

bi
00 ¼ bðui�1;vi�1Þ ¼ zi�1, are formed by partial derivatives at
ðui�1;vi�1Þ, encoding the Bayesian threshold surface b by ðn2 þ

3nþ 2Þ=2 numbers (e.g., 10 for order 3). Symmetries, such as those
resulting from (17), may reduce the relevant numbers of
coefficients even further. In situations where the correlation
between ui and vi is known and respected completely (i.e., ki

¼ 1),
there are only nþ 1 relevant coefficients.

These approximations suggest how animals could make
optimal decisions while minimizing the demand on cognitive
resources, especially if neural capacity is limited (Dukas, 1998,
2002). The connection to older work of the 1980s and early 1990s
(Houston et al., 1982; Kacelnik and Krebs, 1985; Mangel, 1990) is
obvious when looking at a special case. For vanishing knowledge,
ki
¼ 0, the updating rule (15) and the observed value xi of the

indicator variable can be implemented directly in (21),

zi ¼ zi�1 þ
X

1phþjpn

b
i

hjðxi � ui�1Þ
h
ðxi � vi�1Þ

j, (22)

where b
i

hj ¼ bi
hjð1�Yi

si1
Þ
h
ð1�Yi

si2
Þ
j. Then the 1st-order approx-

imation leads to an updating rule for the threshold that is
reminiscent of the so-called linear operator, i.e.,

zi ¼ zi�1 þ b
i

10ðxi � ui�1Þ þ b
i

01ðxi � vi�1Þ

where

b
i

01 ¼ 0;

b
i

10 ¼ 0;

;

8>>><
>>>:

if si ¼

U;

V ;

U [ V :

8>><
>>: (23)

The 0th-order approximation represents a fixed threshold, zi ¼ z0,
and therefore does not include learning.

In the next section, distributions for xU and xV will be
generated in the context of a biological example, where we can
recognize the nature of the dependencies described by L and ki.
We will investigate the performance of the Bayesian threshold
model compared to its low-order approximations, up to order 3.
The performance will be studied over different but constant
utilization of memory and fixed amounts of knowledge,
ðmi; ki

Þ ¼ ðm; kÞ, 8i, characterizing a particular observer.

3. A population-dynamic model

The decisions investigated in the previous section, intended to
increase the fitness of an observer, are based on the distribution of
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an indicator variable associated with individuals in a large
population, with values strongly depending on the state an
individual occupies at the moment of observation. Different
from a common approach in the field of applied Bayesian
analysis, where standard probabilistic distributions (such as
Poisson or normal distributions with known priors, etc.) are
utilized, we will estimate the required distributions of xV and xU

based on realistic assumptions about the average individual in the
population.

3.1. Probability distributions obtained via convolution

The value of the system variable, which represents the current
biological state of an observed individual, switches between V and
U. The assumed relation between the corresponding expectations
values, uov, identifies the sequence ðU;VÞ as the natural order.
This convention is based on our example of mating flies (Section
2.1), where the indicator variable encodes the female’s increasing
attractiveness over time and the natural sequence for female
behavior of first rejecting and then accepting courting males. We
investigate a scenario, where the growth of the indicator variable
over time periods is assumed to be constant and fixed for each
state. This also applies to an auxiliary state we introduce, which
defines a third value of the system variable, W � U, along with a
corresponding random variable xW on I. As indicated, the event W

is supposed to imply U, and the sequence ðW ;UnW ;VÞ is
associated with increasing expectation values of the correspond-
ing random variables. We propose a cyclic recurrence of the states
in the latter sequence where W characterizes the recurring initial
state.

Starting with distributions of the random variables, tW , tUnW ,
tV , which are supposed to model the durations of an average
individual in the states, W , UnW , V , respectively, we aim at
constructing the PDFs of xV and xU . For the transitions between
the three considered states, the summands, tU ¼ tW þ tUnW and
tU[V ¼ tU þ tV , form the random variables associated with the
time periods from entering the state W until leaving the state U

and entering V , and leaving V and re-entering W , respectively.
Noting that the addition of random variables translates as
convolution of the corresponding PDFs, we obtain

PDF½tU � ¼ PDF½tW � 	 PDF½tUnW � and (24)

PDF½tU[V � ¼ PDF½tU � 	 PDF½tV �; resp. (25)

By exploiting a linear time-dependency of the indicator variable,
we can calculate the PDFs for the random variables of the states
X 2 fU;Vg evaluating the probabilities of the composed events of
‘‘being in X AND leaving X again’’ at almost any time, i.e.,
almost surely for any value of the indicator variable.1 The
probabilities of the AND-events are given by the products of the
probability of entering X and the conditional probability of leaving
X again, i.e.,

PDF½xU � / CDF½tW � 
 ð1� CDF½tU �Þ, (26)

PDF½xV � / CDF½tU � 
 ð1� CDF½tU[V �Þ, (27)

where the factors are expressed in terms of CDFs. Renormalization
of the PDFs can be achieved via the prevalence ratio associated

with the two basic states,

CDF½xU �

CDF½xV �
¼

PðUÞ

PðVÞ
¼

1

l
� 1. (28)

The only parameter involved is the probability l of being in V .

3.2. A simple model and its analytically treatable limiting case

Proposing the simplest scenario (Fig. 2A), we assume that the
durations in the states U and V , represented by distributions of
the random variables tUnW and tV , are given through constant
densities over intervals defined by two parameters, i.e.,

PDF½tUnW � / 1½b;g� and PDF½tV � / 1½0;1�b�g�, (29)

where b; g 2 I and bog. Without introducing new parameters, we
let the initial state W be given by a slightly more complicated
density—a linearly decreasing function that vanishes at b,

PDF½tW �ðzÞ / ðb� zÞ1½0;b�ðzÞ. (30)

This choice ensures smooth PDFs for the state U (cf. the red graph
in Fig. 2E), and the disjoined supports of tW and tWnU exclude
immediate transitions from W to V . The growth rates of the
indicator variable, being constant within but not necessarily equal
between different states (indicated by different slopes of the
vectors in Fig. 2C), are fixed implicitly by the renormalization
parameter l.

We have written a computer algebra (Wolfram Research, Inc,
2007) routine (included in PopulationModel.nb, Supplemen-
tary on-line material) that handles piecewise defined functions to
calculate analytical expressions for the PDFs of xV and xU . The
results are quite involved (cf. Fig. 9 in Appendix A.3)— they
contain 24 and 11 rational functions in b and g (with polynomials
of up to order 6), respectively, representing coefficients in front of
different Heaviside step-functions y (which serve as basis
elements). Even starting with simple initial distributions, we
must acknowledge that a realistic distribution-based approach is
very challenging; see the expectation value of xV (Fig. 9) required
to determine the Bayesian threshold (cf. Section 2). It is
impossible to calculate analytic expressions for the two defining
parameters, b and g, depending on u and v; the determining
polynomials are far beyond order four (see v and u in Fig. 9).

In order to continue with an analytical approach we must
further simplify the distributions. To get simpler expressions and
fewer determining parameters, we consider the limit where the
duration in the state V approaches zero. (For our concrete example
in Section 3.4, short stays in V are justified by a relatively low
prevalence l5 1

2, which results in a high turn-over rates.) In the
corresponding limit, b! 0 and g! 1, (26) and (27) yield the
following distributions:

PDF½xU �ðzÞ ¼ 2ð1� lÞð1� zÞ, (31)

PDF½xV �ðzÞ ¼ 6lð1� zÞz, (32)

with expectation values (cf. Fig. 2F),

u ¼ 1
3 and v ¼ 1

2. (33)

Note that these formulas are only correct for z40; our limit
transforms tW into a Dirac-delta distribution and technically only
the PDFs of xWnU and xV degenerate into a line and a parabola,
respectively. Therefore, we (formally) exclude our auxiliary state
W ! ; again (e.g., by letting I! ð0;1� and compactifying) and
redefine UnW ! U in this limiting case (Fig. 2B, D, F). Most
importantly, we can now explicitly calculate (Appendix A.1) the
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1 The event of being in X includes entering X and being already in X. However,

these latter two events are disjoined and therefore the probability of being in X is

obtained by the sum of the probabilities of the two unified events. In the case we

consider here, where the tX are given by continuous PDFs, the probability of

entering X at any chosen time vanishes, and thus we are left with the probability of

being already in X. Similar arguments apply to the events associated with leaving

X.
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Bayesian threshold,

bðu;vÞ ¼
1

3ðl� 1Þo
2ð6u� vÞðl� 1Þo
�

þ ððl� 1Þð81u2 þ ð3u� 2vÞð21uþ 4vÞðl� 1ÞoÞoÞ

54ðl� 1Þ2o2ð5ðl� 1Þoþ 27Þu3

���
� 27vðl� 1Þ2o2ð11ðl� 1Þoþ 9Þu2

þ 36v2ðl� 1Þ3o2uþ 28v3ðl� 1Þ3o3

þ
1

2

p
ððl� 1Þ3o3ð4ðl� 1Þoð243ð6u� vÞu2

þ ð3u� 2vÞ2ð30uþ 7vÞðl� 1ÞoÞ2

�4ð81u2 þ ð3u� 2vÞð21uþ 4vÞðl� 1ÞoÞ3ÞÞ
�ð1=3Þ

!

þ 54ðl� 1Þ2o2ð5ðl� 1Þoþ 27Þu3

�

� 27vðl� 1Þ2o2ð11ðl� 1Þoþ 9Þu2

þ 36v2ðl� 1Þ3o3uþ 28v3ðl� 1Þ3o3 þ
1

2

p
ððl� 1Þ3o3


 ð4ðl� 1Þoð243ð6u� vÞu2 þ ð3u� 2vÞ2ð30uþ 7vÞðl� 1ÞoÞ2

�4ð81u2 þ ð3u� 2vÞð21uþ 4vÞðl� 1ÞoÞ3ÞÞ
�ð1=3Þ

!
(34)

and its low-order approximations (Fig. 3). By utilizing computer
algebraic tools one can easily find the analytic solution for the
expansion coefficients bhj; e.g., the 0th-order reads
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Fig. 2. The population-dynamic model (left) and its limiting case (right). (A, B) initial distributions ts; duration of an average individual in the states W (blue), UnW (red), V

(blue). (C, D) indicator variables corresponding to the mean and maximal durations followed over in the states W , UnW , V . (E, F) distributions xs of the indicator variable in

the states U (red), V (green). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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In our simulations (Section 4.1) we will consider domains I ¼

½0; y� with variable upper bound y40, which transforms the
formulas above in a straightforward way. The expectation values
read u ¼ y=3 and v ¼ y=2, but the correlation remains

l �
v

u
¼

3

2
. (36)

3.3. Hybrid concepts: external parameters and non-probabilistic

constraints

When looking for an optimal learning strategy in concrete
biological settings (e.g., Section 2.1) we realized that an exclu-
sively probabilistic approach may not be sufficient to obtain
optimal decisions under realistic conditions, including the
implementation of the computational method in the brain of an
observer living in a complex but structured environment. We have
thus introduced two deterministic parameters, memory and
knowledge, and we assume that the amounts utilized cannot be
controlled by the observers in the context of their learning task,
where only statistical analysis is available. The values of these
parameters are supposed to characterize different classes of
observers. However, the two parameters are not independent of
each other. Limited implementation of memory, for instance, can
be interpreted as a rapidly changing environment and may
neutralize the effect of knowledge.

The implementation of environmental constraints modifies the
probabilistic setting and therefore also the predictions based on
the Bayesian fitness threshold. Ultra-Bayesian updating will

certainly influence the overall performance. A purely probabilistic
(parameter-free) model relying on statistical estimates always
predicts Bayesian threshold values as the optimal solution (cf.
fitness contour in Fig. 4B given for the limiting case of Section 3.2
with variable upper bound y40). Bayesian threshold values,
however, may not be optimal for any combination of the
estimated system variables, u and v. When we start on the ridge
of the fitness maximum, the optimal update for the variables,
which keeps fitness maximal, points along that ridge
(Dv=Du ¼ 0:73, illustrated by the black arrow and curve in
Fig. 4B and C). But, if we include innate knowledge, expressed
by relation (36) and weighted through updating by the parameter
k, the optimal update must point away from that ridge
(Dv=Du ¼ 3

2, illustrated by the red arrow and curve in Fig. 4B
and C).

We could not compare the success of the different strategies
and parameter combinations by analytical means. Instead, we ran
computer simulations to study the performance. We expected the
Bayesian threshold strategy and its approximations to be most
successful in parameter regions that incorporate the highest
amounts of memory and knowledge. Furthermore, we predicted
that the outcome would be shifted towards intermediate amounts
of knowledge for low values of memory.

3.4. Example, part 2: the female fly population

Here we summarize our population model and explicitly
identify the connection to our example modeling the courting

ARTICLE IN PRESS

Fig. 3. The four plots illustrate the optimal Bayesian threshold (red) and its constant (green), linear (blue), quadratic (purple), and cubic (brown) approximations at

ðu;vÞ ¼ ð13 ;
1
2Þ, respectively, with parameters o ¼ 1 and l ¼ 1

100. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)
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Fig. 4. (A) The reddish blue curves show the Bayesian probability threshold (normalized with respect to the frequency l of the state V) and the greenish blue curves the

relative cost Crel of learning (in arbitrary units on a logarithmic scale) over I, cf. (9). The two families of curves (�log10 l ¼ 3;2;1; scaled towards blue) intersect all around

the optimal threshold ð� 0:18Þ. The relative cost is nearly constant for extended regions of the indicator variable at low values. (B) Fitness, in terms of Crel, is plotted over the

space of indicator variables ðu;vÞ; the bluest contour (among the black level curves) represents the optimal threshold. Corrections induced by local variations of variables,

predicted according to either purely probabilistic or ultra-Bayesian updating, are indicated by black and red vectors, respectively. (C) Predicted corrections, supposed to

establish optimal threshold values over deviations Du of the observed variable u are drawn for various coefficients l (represented by different colors) in (17). Both the black
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references to color in this figure legend, the reader is referred to the web version of this article.)
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problem (Section 2.1)—focusing on the female individuals, the
states and distributions.

A female’s state was assumed to determine the indicator
variable, and both these quantities were modeled to change over
time. The initial state W refers to sexually unavailable females,
including immature and recently mated females. Our model
assigns a linearly decreasing probability density with respect to
sexual attractiveness to the subpopulation in this state, cf. (30).
The initial state is assumed to be an idealization. There is no finite
duration of stay associated with it (i.e., horizontal arrows in
Fig. 2); the female flies are supposed to go over into a state U

immediately. This latter state represents either the period prior to
sexual maturity or an infertile phase. From entering to leaving the
state U, we assumed that the attractiveness grows linearly with
time. The duration that flies are supposed to be in this state is
finite; as the easiest of all possible scenarios, we assumed a
constant distribution of xU .

After a certain time each female becomes receptive and enters
the state V , which is associated with an increase in female
attractiveness. For simplicity, the rate of increase is again assumed
to be constant. Justified by a relatively low prevalence of female
flies l5 1

2 in this state of acceptance, mating occurs fast and
results in high turn-over rates. Again, we model the females’
duration in V by a constant density of xV . After leaving state V ,
mated female flies re-enter the initial state W at a low level of
sexual attractiveness, and they go through the states once again,
etc.

We assume that the admissible values of the indicator variable
are taken in a bounded domain, I. The ratio of probabilities
describing a male’s courting success or failure can be interpreted
as a ratio of subpopulation sizes associated with the states, U and
V; this is the right-hand-side equality of (28). In order to exclude
immediate transition from W to V , the supports of the PDFs are
chosen to be disjoined. Different rates are represented by different
slopes of the vectors in Fig. 2, each encoding constant growth.

The biased ratio l5 1
2 is another reason why we have included

innate knowledge. Through observation it is impossible to obtain
an estimate for l—it is even difficult to predict a reliable estimate
for l; during their lifetime, males only mate with three females on
average, as the computer simulations of the next section confirm.

4. Performance of the approximation strategies

4.1. Simulations

Following the methods developed in Sections 2 and 3, we ran
computer simulations of the male fruit flies’ courtship decisions
presented in Sections 2.1 and 3.4 to investigate the performance of
the Bayesian threshold method in comparison to its approxima-
tions. We calculated the average mating success of males over the
usage of memory and knowledge for each of the four approxima-
tion strategies illustrated in Fig. 3 with individual females
generated according to the distributions of the limiting case
(Fig. 2B, D, F) described in Section 3.2.

Our computational resources allowed us to simulate 10,000
flies for each of the five strategies, which took about one week. It
is interesting to note that the computationally demanding
Bayesian strategy occupied more than half of that time. Each fly
was followed up over a virtual lifetime of ttotal ¼ 600 min in total,
which was divided into the following periods defining the cost
parameters: m ¼ 1 min for searching for a female, n ¼ 1 min for
courtship, f ¼ 20 min for mating, and c ¼ 0 if being refused. No
cost was assigned to encountering an unattractive female and
avoiding to court. We performed the simulations for various initial

thresholds in I, and we assumed that the predicted threshold can
only take positive values, which is not excluded by (21).

4.2. Results

For most of our memory-knowledge space the Bayesian
threshold strategy and its linear and quadratic approximations
have the highest success rates and perform equally well (Fig. 5);
only for large utilization of memory and knowledge ðm; kX0:75Þ,
the cubic approximation leads to similar outcomes. However, for
small utilization of knowledge ðkp0:25Þ and almost all ranges of
memory, the linear approximation is the unique winner and
performs even better than the Bayesian threshold calculations.
The fixed threshold strategy represented by the constant
approximation offers the best performance only for small
utilization of memory ðmp0:25Þ and no knowledge ðk ¼ 0Þ.
Finally, for maximal utilization of memory, which corresponds
to the knowledge-free Bayesian case ðm ¼ 1; k ¼ 0Þ, learning
cannot improve the fixed threshold strategy; and the Bayesian
strategy and the linear approximation perform equally.

All the considered learning strategies, including the Bayesian
threshold and its approximations, perform well as long as the
non-probabilistic environmental constraints (Section 3.3) are
respected through ultra-Bayesian updating (Section 2.5), in
particular for high utilization of memory ðmX0:5Þ but wide
ranges of knowledge ðkX0:25Þ. A stable environment, which
corresponds to large utilization of memory ðmX0:5Þ, favors high
implementation of knowledge ðkX0:5Þ, but a changing environ-
ment, corresponding to low memory ðmp0:25Þ, is exploited best
at an intermediate level of knowledge ð0:25pkp0:75Þ. This
confirms our predictions at the end of Section 3.3.

Lower order approximations ðp2Þ are as successful as the
Bayesian threshold but perform better than higher order approx-
imations ð¼ 3Þ. Learning with good memory can compensate for
possible disadvantages caused by either the strategy or the
amount of knowledge implemented. Likewise, good knowledge
can compensate for disadvantages caused by either the strategy or
bad memory.

On an absolute scale, the effects of learning seem to be small.
The maximal gain obtained by either learning method at maximal
memory, high knowledge and realistic fitness parameters is
between 3% and 4%. This number is large in the context of natural
selection and is also larger than the magnitude of simulation
errors (Fig. 6), which are smaller than 1%.

In addition to averaging over individual flies, we also averaged
over initially assigned thresholds, but, except for the fixed
threshold strategy, we found that the results did not depend on
the initial conditions. We also ran simulations with other
distributions of U and V satisfying relation (1), and obtained very
similar results. It is thus plausible that our results are valid in
other contexts as well.

4.3. Remarks

Our main result about the excellent performance of low-order
approximations to the Bayesian threshold is not too surprising
from a technical perspective. The Bayesian threshold surface is
almost flat over an extended area around the point about which
we perform the approximating expansions (Fig. 3). This is the case
in our concrete example but might not be true in any situation,
which implicitly refers to possible restrictions to the applicability
of our approximation approach, namely, when the Bayesian
surface incorporates high local variation.

A more differentiated view on our results raises three key
questions. First, why does the linear approximation perform
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better than the fully Bayesian strategy and the higher-level
approximations at low innate knowledge (Fig. 5)? We think that
the linear approximation is superior owing to its better ability to
accommodate information that has been misperceived. The
flexibility of the threshold estimation, defined by the difference
of the average threshold and the estimate of the last threshold,
measures this ability. Indeed our analyses indicate that the linear
approximation is the most flexible algorithm when it comes to
implementing small amounts of knowledge and is thus the most
successful one in this region (Fig. 7B). If this is a general
characteristic of the linear approximation, it may be a preferred
algorithm over the full Bayesian calculations in settings with little

knowledge. Our second question involves the cubic approxi-
mation, which, although of a higher order, performs poorly, except
for high innate knowledge, where all learning strategies perform
comparably well. Recall that the approximations are obtained by
local expansions (Fig. 3). Thus we have no reason to assume that
higher orders perform better (Fig. 7A). That is, the order is not a
measure of quality in our context. Finally, would the linear
structure (or one of the simple polynomial structures we have
investigated) be successful if obtained by means other than an
approximation of the Bayesian threshold? Computer simulations
suggest that the Bayesian approximation is only of intermediate
success but extends over the whole parameter space, whereas
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Fig. 6. (A) The stochastic error of the average success (plotted over the observer’s parameter space) resulting from our computer simulations. (B) The corresponding error

distribution (box-whisker) integrated over the parameter space. The maximal relative error is smaller than 1%. (Note that the figures depict the average error, not the

percentage.)
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modifications can be more successful but only within limited
parameter regions (Fig. 8).

5. Discussion

We have investigated a learning problem involving an observer
that makes costly decisions that can increase its fitness. We
approached the solution to this optimization problem utilizing a
threshold method based on Bayesian principles. As our main
result, we found that low-order approximations to the Bayesian
threshold perform as well as the full Bayesian calculations (Fig. 5).
Among these approximations, we highlight the one with the
simplest structure, the linear approximation, which performs

particularly well when either memory or innate knowledge are
limited. Approximations have two major advantages over the full
Bayesian calculations. First, they have much lower memory
requirements because they handle numbers rather than distribu-
tions (22). Second, they involve simpler, shorter calculations
compared to the full Bayesian approach, as illustrated by the
length of (34) versus (23). These properties make approximations
attractive candidates for the method implemented by real nervous
systems.

To examine the performance of different observers, we have
extended the probabilistic description and developed an ultra-
Bayesian updating algorithm. We assumed that observers are
characterized by two interrelated parameters modeling the
memory capacities and innate knowledge, which cannot be
optimized through learning. The implementation of these hybrid
concepts indicated that, for a realistic environment involving
internal dynamics, performance is not optimal if observers rely
only on genuinely probabilistic principles (Fig. 4). Ultra-Bayesian
updating outperforms fitness maximization estimated via thresh-
olds and produces non-trivial performance surfaces (Fig. 5).
Depending on the level of memory, the adequate amount of
knowledge always improves the overall success rate. For both the
Bayesian threshold strategy and its approximations, we found that
good memory compensates for bad knowledge and vice versa. Bad
memory, however, requires only intermediate knowledge to
achieve best performance (Fig. 5), whereas perfect memory in
the knowledge-free case, representing the totally Bayesian
updating scheme, does not allow either the full Bayesian
algorithm or its approximations to perform better than the fixed
threshold strategy (Fig. 5).

In addition to utilizing non-probabilistic elements for solving
the optimization problem, we used non-standard probabilistic
methods for modeling the distributions defining the system
settings relevant for our observers. Unlike most studies in the
field which, for example, utilize normal distributions, we
constructed the relevant distributions based on assumptions
about the internal dynamics of the environment. We started from
initial distributions, which define the durations of individuals in
the relevant states, and calculated their propagation in time using
basic mathematical concepts such as convolution products
(Section 3.1). We had to apply computer algebraic methods to
obtain analytic expressions for these realistic distributions
(Fig. 2E). This illustrates a universal aspect of modeling
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Fig. 7. (A) Estimated average thresholds for the various strategies (cf. Fig. 5, we utilize the same colors here) with respect to the amount of memory and knowledge utilized.

The constant approximation (green) defines the optimal threshold. Except for the cubic approximation (brown), the optimal threshold is estimated well over large regions

of memory and knowledge parameters. (B) Flexibility of the threshold estimate for the various strategies. The linear approximation (blue) is the most flexible method at low

knowledge. Here, flexibility is defined as the average (over both, the runs and the various initial thresholds) of the differences between the average and the last threshold

estimate. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Average success of the linear operator. The blue surface corresponds to the

Bayesian approximation and is therefore the same blue surface as in Fig. 5. The

other four surfaces correspond to small modifications of the Bayesian coefficients,

from �10% (red) to þ10% (brown) for both linear coefficients simultaneously. The

Bayesian approximation is of intermediate success, but the modifications

dominate only for certain parameter combinations; for example, the red

modification is more successful for low values of memory and knowledge,

whereas the brown is more successful for high values. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of

this article.)
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realism—complication, which forced us to utilize approximations.
In fact, we performed our simulations for a limiting case. These
limiting distributions, however, preserved the important quality
relating to the underlying system (Fig. 2), namely, dependencies
reflecting environmental constraints, cf. (36). Performance, as

discussed above, crucially depends on how decisions are made
based on knowledge about the environment.

Several previous studies used modeling techniques as simple
as our linear approximations. Bush and Mosteller (1951) assumed
that learning causes a linear transformation in the probability of a
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Fig. 9. PDFs (un-normalized) and expectation values of the full ðb; gÞ-population model (calculated in PopulationModel.nb, Supplementary on-line material).
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subject exhibiting a certain response. The linear operator was
further explored in behavioral ecology (Kacelnik and Krebs, 1985;
McNamara and Houston, 1987). Mangel (1990) and McNamara
and colleagues (Collins et al., 2006; McNamara et al., 2006) used
linear transformations within a Bayesian framework, relying on
the fact that parameters defining the distributions utilized there
are concatenated via linear operations when updated (DeGroote,
1970, p. 229). To our knowledge, neither the linear operator nor
the polynomial structures have been investigated as approxima-
tions to Bayesian calculations. Unlike the approaches quoted
above, which all use standard probabilistic distributions, our
Bayesian threshold model is built upon distributions tailored to
the underlying population dynamics. Importantly, the resulting
distributions, which are less standard in appearance (Fig. 2), are
not independent of each other. We have also seen huge numerical
complexity (Fig. 9), even when calculating the Bayesian threshold
with simplified distributions (34). However, decisions based on
approximations do not require the observer to determine the
Bayesian threshold. This adds another important aspect: the
mathematical structure of the approximations is universal (22).
Non-Bayesian realizations may even perform better than their
Bayesian counterparts for certain parameter regions. The linear
approximation (Fig. 7B) and its non-Bayesian realizations (Fig. 8)
are very successful at low memory, meaning that it can be a
robust strategy in rapidly changing environments. Most
remarkably, in the absence of knowledge, the linear
approximation turns out to be the only successful learning
strategy. All this suggests that the structural foundation
underlying decisions involving learning may be as simple as the
linear operator introduced half a century ago by Bush and
Mosteller (1951).

The linear as well as the other low-order polynomial structures
offer high levels of plasticity. Besides their realization as Bayesian
approximations, explaining the good performance (Fig. 7B) as
detailed for the linear approximation in Section 4.3, we also
emphasize their easy implementation (Fig. 8). An animal’s brain
needs to encode only a few numbers: observations are weighted
by a few coefficients, bi

hj in (22), estimating thresholds that
immediately lead to optimized decisions. We cannot further
describe how these numbers, the different strategies, or the
decision algorithm are encoded in an animal brain, though we
believe that the simplicity and the performance, for the linear
approximation in particular, would be especially attractive for
animals with small brains and limited computational ability.
Nevertheless, due to its efficiency, this simple structure may be
used by organisms with elaborate cognitive abilities as well
because they could allow improved performance owing, for
example, to optimizing the use of expensive brain tissue, or the
ability to execute faster decisions.

We have demonstrated that approximations of Bayesian
strategies as well as extensions of Bayesian updating are powerful
alternatives to completely Bayesian algorithms, which, besides
being computationally demanding, are rather unrealistic for
their purpose. The concrete example we investigated suggests
that a linear approximation, which performs best with inter-
mediate levels of memory and knowledge, encodes good strate-
gies for small brains such as those of fruit flies and could
be as successful even for animals with greater cognitive abilities.
We should note that, because the approximations performed
as well as the full Bayesian threshold strategies for most
parameter values, empirical studies testing theoretical predic-
tions derived via Bayesian calculations cannot easily inform us
whether subjects employ full Bayesian or simpler approxi-
mation methods. In the knowledge-free case, however, we
identified the linear approximation as the only profitable learning
strategy.
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Appendix A

A.1. The optimal threshold of the limiting case

For the limiting case of our population model, the relative cost
reads

CrelðzÞ ¼
9olðz� 3vÞu2z2 þ 4oð1� lÞðz� 6uÞv3zþ 36ð1þoÞu2v3

9lu2ðz� 2vÞðzþ vÞ2

(37)

¼
1þoð1þ 2lzÞð1� zÞ2

lð1þ 2zÞð1� zÞ2
. (38)

After simplification, (10) can be written as

0 ¼ � 27u2zq þoð1� lÞðzq � 3uÞð4v2 þ zqðzq � 9uþ 2vÞÞ (39)

¼ � 3zq þoð1� lÞð1� zqÞ
3. (40)

Being a cubic equation, we can calculate its roots explicitly
(BayesianThreshold.nb, Supplementary on-line material); the
relevant roots are given by (34) and (35). Utilizing inequality (11),
i.e.,

0o27u2ðv� zqÞ þoð1� lÞð4v3 þ uð27u� 18zqÞðv� zqÞ � 2z3
qÞ (41)

¼ 3ð1� 2zqÞ þ 4oð1� lÞð1� zqÞ
3, (42)

we can confirm that zq is an optimal threshold, namely if

zqpv and zqp3u=2; i.e., zqp1=2. (43)

Notice the threshold’s independence from cost and population
size parameters.

A.2. Ultra-Bayesian updating: knowledge through convex

combination

The update of u and v after the ith observation incorporates
knowledge ki through a convex combination,

ui

vi

 !
/ki Dui

Dvi

 !
þ ð1� ki

Þ
ui

vi

 !
, (44)

where also the updating correction is encoded through convex
combinations,

Dui

Dvi

 !
¼

1� l
l

� �
ui þ

l
1� l

� �
vi ¼

1� l l
l 1� l

� �
ui

vi

 !
,

(45)

respecting the frequency l of states in a Bayesian fashion.
Together, we obtain a single convex combination in terms of the
parameter ki ¼ lki,

ui

vi

 !
/ki

1� l l

l 1� l

 !
ui

vi

 !
þ ð1� ki

Þ
ui

vi

 !
(46)

¼
1� lki lki

lki 1� lki

 !
ui

vi

 !
. (47)

A.3. Formulas of the population-dynamic model

The PDFs of the population-dynamic model containing the two
parameters b and g can be expressed analytically (Fig. 9) with
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expectation values different from the limiting case (33). Besides
the complexity involved when dealing with more realistic
distributions, one realizes conceptual problems. For a given set
of expectation values, u and v (estimated through mean values), it
is impossible to solve for b and g analytically. Nevertheless, the
full population model could be applied in numerical simulations.

Appendix B. Supplementary data

Supplementary data associated with this article can be found
in the online version at 10.1016/j.jtbi.2009.03.020.

References

Bush, R.R., Mosteller, F., 1951. A mathematical model for simple learning.
Psychological Review 58, 313–323.

Clark, C.W., Mangel, M., 2000. Dynamic State Variable Models in Ecology. Oxford
University Press, New York.

Collins, E.J., McNamara, J.M., Ramsey, D.M., 2006. Learning rules for optimal
selection in a varying environment: mate choice revisited. Behavioral Ecology
17, 799–809.

DeGroote, M.H., 1970. Optimal Statistical Decisions. McGraw-Hill, New York.
Dukas, R., 1998. Constrainsts on information processing and their effects on

behaviour. In: Dukas, R., (Ed.), Cognitive Ecology, University of Chicago Press,
Chicago, pp. 89–127.

Dukas, R., 2002. Behavioural and ecological consequences of limited attention.
Philosophical Transactions of the Royal Society of London B 357, 1539–1548.

Dukas, R., 2008. Evolutionary biology of insect learning. Annual Review of
Entomology 53, 145–160.

Dukas, R., Clark, C.W., Abbott, K., 2006. Courtship strategies of male insects: When
is learning advantageous? Animal Behaviour 72, 1395–1404.

Dukas, R., Ratcliffe, J., 2009. Cognitive Ecology II. University of Chicago Press,
Chicago.

Fiser, J., Aslin, R.N., 2002. Statistical learning of new visual feature combinations by
infants. Proceedings of the National Academy of Sciences USA 99,
15822–15826.

Gigerenzer, G., Todd, P.M., Group, A.R., 1999. Simple Heuristics that Make us Smart.
Oxford University Press, Oxford.

Gold, J.I., Shadlen, M.N., 2007. The neural basis of decision making. Annual Review
of Neuroscience 30, 535–574.

Holmgren, N.M.A., Olsson, O., 2000. A three-neuron model of information
processing during Bayesian foraging. In: Malmgren, H., Borga, M., Niklasson,
L. (Eds.), Perspectives in Neural Computing: Artificial Neural Networks in
Medicine and Biology. Springer, London, pp. 265–270.

Houston, A.I., McNamara, J.M., Kacelnik, A., 1982. Some learning rules for acquiring
information. In: McFarland, D. (Ed.), Functional Ontogeny. Pitman, London,
pp. 140–191.

Kacelnik, A., Krebs, J.R., 1985. Learning to exploit patchily distributed food. In:
Sibly, R.M., Smith, R.H. (Eds.), Behavioural Ecology. Blackwell, Oxford,
pp. 189–205.

Knill, D.C., Pouget, A., 2004. The Bayesian brain: the role of uncertainty in neural
coding and computation. Trends in Neurosciences 27, 712–719.

Kording, K., 2007. Decision theory: What ‘‘should’’ the nervous system do? Science
318, 606–610.

Kording, K.P., Wolpert, D.M., 2004. Bayesian integration in sensorimotor learning.
Nature 427, 244–247.

Mangel, M., 1990. Dynamic information in uncertain and changing worlds. Journal
of Theoretical Biology 146, 317–332.

Manning, A., 1967. The control of sexual receptivity in female Drosophila. Animal
Behaviour 15, 239–250.

McNamara, J.M., Green, R.F., Olsson, O., 2006. Bayes’ theorem and its applications
in animal behaviour. Oikos 112, 243–251.

McNamara, J.M., Houston, A.I., 1987. Memory and the efficient use of information.
Journal of Theoretical Biology 125, 385–395.

Rodriguez-Girones, M.A., Vasquez, R.A., 1997. Density-dependent patch exploita-
tion and acquisition of environmental information. Theoretical Population
Biology 52, 32–42.

Stephens, D.W., Brown, J.S., Ydenberg, R.C., 2007. Foraging: Behavior and Ecology.
University of Chicago Press, Chicago.

Valone, T.J., 2006. Are animals capable of Bayesian updating? An empirical review.
Oikos 112, 252–259.

van Gils, J.A., Schenk, I.W., Bos, O., Piersma, T., 2003. Incompletely informed
shorebirds that face a digestive constraint maximize net energy gain when
exploiting patches. American Naturalist 161, 777–793.

Wolfram Research, Inc. 2007. Mathematica, Version 6, Champaign, IL.
Yang, T., Shadlen, M.N., 2007. Probabilistic reasoning by neurons. Nature 447,

1075–1080.
Ydenberg, R.C., Brown, J.S., Stephens, D.W., 2007. Foraging: an overview. In:

Stephens, D.W., Brown, J.S., Ydenberg, R.C. (Eds.), Foraging: Behavior and
Ecology. University of Chicago Press, Chicago, pp. 1–28.

ARTICLE IN PRESS

A. Lange, R. Dukas / Journal of Theoretical Biology 259 (2009) 503–516516




