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Abstract Honeybees, Apis mellifera, who show temporal

polyethism, begin their adult life performing tasks inside

the hive (hive bees) and then switch to foraging when they

are about 2–3 weeks old (foragers). Usually hive tasks

require little or no flying, whereas foraging involves flying

for several hours a day and carrying heavy loads of nectar

and pollen. Flight muscles are particularly plastic organs

that can respond to use and disuse, and accordingly it

would be expected that adjustments in flight muscle

metabolism occur throughout a bee’s life. We thus inves-

tigated changes in lifetime flight metabolic rate and flight

muscle biochemistry of differently aged hive bees and of

foragers with varying foraging experience. Rapid increases

in flight metabolic rates early in life coincided with a

switch in troponin T isoforms and increases in flight

muscle maximal activities (Vmax) of the enzymes citrate

synthase, cytochrome c oxidase, hexokinase, phospho-

fructokinase, and pyruvate kinase. However, further

increases in flight metabolic rate in experienced foragers

occurred without additional changes in the in vitro Vmax of

these flight muscle metabolic enzymes. Estimates of in

vivo flux (v) compared to maximum flux of each enzyme in

vitro (fractional velocity, v/Vmax) suggest that most

enzymes operate at a higher fraction of Vmax in mature

foragers compared to young hive bees. Our results indicate

that honeybees develop most of their flight muscle meta-

bolic machinery early in life. Any further increases in flight

metabolism with age or foraging experience are most likely

achieved by operating metabolic enzymes closer to their

maximal flux capacity.
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Abbreviations

CS Citrate synthase

COx Cytochrome c oxidase

HK Hexokinase

PFK Phosphofructokinase

PK Pyruvate kinase

Vmax Enzyme maximum activity

v In vivo pathway flux

v/Vmax Enzyme fractional velocity

VCO2
Rate of carbon dioxide production

Introduction

Flight muscles are among the most energetically costly

organs to power and maintain. They can constitute as much

as 65% of body mass and thus represent a substantial

energetic investment (Marden 2000). In fact, life history

tradeoffs can involve a circumvention of this investment

when flight is unnecessary (Zera and Denno 1997; Marden

2000). Indeed, flight muscles are extremely plastic organs

that can respond in a flexible manner to environmental

factors and to use and disuse. Well-known examples

include the considerable increases in flight muscle
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metabolic enzyme capacities in migratory birds during

migration (Lundgren and Kiessling 1985; Driedzic et al.

1993; Guglielmo et al. 2002) and the rapid muscle gener-

ation and degeneration for differential investments in flight

or reproduction in flying insects (Zera and Denno 1997;

Robertson 1998; Marden 2000).

Muscle plasticity could be particularly important in

Honeybees, Apis mellifera, who show temporal polyethism

(Winston 1987). Honeybees typically spend the first

2–3 weeks of their adult life performing tasks inside the

hive (hive bees) and then start foraging for another

1–2 weeks until they die (foragers). Therefore, bees with

the same foraging experience can vary in age. Hive bees

rarely leave the hive before the onset of foraging, and

accordingly, flying activities are minimal. In contrast,

foragers can spend over 10 h a day foraging and carrying

loads of pollen or nectar nearly as heavy as their own body

weight (Winston 1987). Previous research has shown that

honeybee foragers increase their foraging performance as

they gain foraging experience (Dukas and Visscher 1994;

Schippers et al. 2006; Dukas 2008). That is, the rate of

nectar and/or pollen brought back to the hive by individual

foragers increases with days of foraging experience. One

can thus hypothesize that flight muscle machinery is

upregulated to enhance glycolytic flux, aerobic capacity,

and force output in foragers compared to hive bees, as well

as with increasing foraging experience. Our previous study

on the physiological basis of this increase in foraging

performance revealed increases in a structural component

of honeybee flight muscle (Troponin T 10A) in experi-

enced (mature) foragers compared to hive bees. There was

also a modest increase in the maximal in vitro capacity

(Vmax) of a mitochondrial enzyme (citrate synthase), but no

changes in the Vmax of key glycolytic enzymes as bees

gained foraging experience (Schippers et al. 2006).

In flying insects, increases in ATP turnover rates are

accompanied by matching increases in oxygen consump-

tion because ATP supplies involve fully aerobic metabolic

pathways (Suarez et al. 1996; Wegener 1996). Honeybees

only use carbohydrates (hexoses) to power flight (Rothe

and Nachtigall 1989; Blatt and Roces 2001) and any met-

abolic adaptations affecting flight would act to increase the

flux capacity through the glycolytic pathway. Although no

changes were previously observed in the activity of gly-

colytic enzymes in vitro (Schippers et al. 2006), it is pos-

sible that in vivo, flux rates through metabolic pathways

increase. In fact, honeybee flight muscles are so highly

aerobic that they may have reached an upper limit in the

amount of metabolic enzymes muscle fibers can contain

without affecting myofibrils and therefore power outputs

(Pennycuick and Rezende 1984; Suarez et al. 1997, 1999,

2000). Thus, any increases in pathway flux would occur by

operating enzymes at a higher fraction of Vmax in vivo. As a

result, an examination of in vivo flux through pathways in

relation to the onset of foraging and to foraging experience

is warranted.

Little is known regarding changes over the lifetime in

flight metabolic rates, especially in relation to foraging

experience. Previous research has shown that estimates of

whole-animal and mass-specific maximal metabolic rates

increase with age (Allen 1959; Harrison 1986; Harrison

and Fewell 2002), but it is still unknown whether the same

is true with increasing foraging experience which can be

independent of a bee’s age (Robinson 2002). In addition,

little is known about the timing of flight muscle metabolic

development in hive bees. Our previous results have shown

either small or no increases in Vmax of mitochondrial and

glycolytic enzymes at the onset of foraging and with for-

aging experience (Schippers et al. 2006), suggesting that

most of the muscle metabolic development occurs before

the onset of foraging, at some undetermined point in time

when bees perform tasks inside the hive.

Flight metabolism is not only a function of the meta-

bolic components of flight muscles but is also a function

of its structural machinery. We previously reported an

increase in a major structural component in muscle

(Troponin T isoform(s) containing alternative exon 10A)

in foragers compared to hive bees (Schippers et al. 2006).

In insect muscle, troponin T is a major regulatory protein

with Ca2? binding properties that generally shows many

tissue-specific and developmentally determined isoforms

(Domingo et al. 1998; Herranz et al. 2005). The relative

abundance of different troponin T transcripts has previ-

ously been associated with calcium sensitivity, power

output, and rate of energy consumption in flight muscles

of other insects (Marden et al. 2001, 2008). In honeybees,

the appearance of one troponin T isoform of 46 kDa in

bees younger than 5 days old has been associated with the

acquisition of flight early in life (Domingo et al. 1998).

However, studies on the relative abundance of troponin T

isoforms through development in honeybees are scarce

(Domingo et al. 1998; Herranz et al. 2005) with knowl-

edge mostly at the mRNA level rather than at the protein

level.

In this study, we focused on the lifetime- and caste-

specific changes in flight metabolic rate, flight muscle

metabolic components, and changes in a structural com-

ponent of flight muscles. Specifically, the objectives of this

study were (1) to estimate the lifetime changes in maxi-

mum in vivo fluxes through pathways by measuring whole-

animal hovering metabolism, (2) to elucidate the timing of

muscle biochemical development prior to the onset of

foraging and with foraging experience by measuring in

vitro flux capacities (Vmax) of metabolic enzymes, (3) to

estimate lifetime changes in the fractional velocity of

enzymes, and (4) to assess lifetime changes in the relative
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abundance of flight muscle troponin T isoforms. Overall,

our results provide detailed information on lifetime chan-

ges in flight metabolism of honeybees in relation to both

age and foraging experience.

Materials and methods

Experiments were carried out in two different years in

Southern Ontario, Canada from mid-June to mid-July in

2005 and 2006. The 2005 experiment was carried out at the

University of Guelph and the 2006 experiment was per-

formed at McMaster University. Both sites offered plenty

of nearby flower patches during the time of the experi-

ments. In 2005, we individually tagged 1,000 newly

eclosed bees using differently colored number tags and

introduced them all at once into a four-frame nucleus

containing approximately 8,000 bees. Ten days after

introduction, hive entries and exits of individually marked

bees were recorded for at least 2 h a day, every day,

between 12:00 and 17:00 hours to determine individual

bees’ foraging experience. Bees that performed trips longer

than 5 min and/or carried pollen were considered foragers.

We omitted all shorter trips assuming they were orientation

trips by bees about to initiate foraging (Dukas and Visscher

1994; Capaldi et al. 2000).

In 2006, we tagged 300 newly eclosed bees and intro-

duced them all at once into a two-frame observation hive

containing about 2,000 bees. Twenty-three days after

introduction, we monitored the entries and exits of indi-

vidually marked bees for 1 day from 10:00 to 12:00 hours

and from 14:00 to 16:00 hours to identify foraging bees as

described above. Bees identified as foragers were collected

3 days later. That is, in the 2006 study, we distinguished

between foragers and hive bees but did not record foraging

experience.

Flight metabolic rate

Since honeybee flight is exclusively fuelled by carbohy-

drates (respiratory exchange ratio is 1.0, VCO2
¼ VO2

)

(Rothe and Nachtigall 1989), we measured VCO2
as an

index of metabolic rate. In 2005, hive bees and foragers of

different ages and foraging experiences were collected

from the hive and immediately brought to the lab located

10 m from the hive for VCO2
analysis. Hive bees were

collected directly from the frames, whereas foragers were

captured after returning from a foraging trip. All bees were

individually contained in a transparent cylindrical vial and

placed in the dark until the VCO2
analysis. Hive bees and

foragers were analyzed within 60 and 30 min, respectively,

following removal from the hive. All measurements were

performed between 9:30 and 13:00 hours.

Individual bees were placed in a 500 ml flow-through

respirometry chamber. Rates of CO2 production were mea-

sured using a respirometry system (Sable Systems Interna-

tional Inc., Las Vegas, NV, USA). Ambient air was scrubbed

free of CO2 and water before entering the respirometry

chamber at a rate of 350–500 ml/min set by a calibrated

Subsampler/Pump/Mass flow meter unit. Carbon dioxide

concentrations were determined using a CO2 analyzer, a data

acquisition interface, and Expedata software. Bees were

stimulated to fly by placing the respirometry chamber next to

an open window and by agitating the chamber to induce

flight when bees landed. We only used data from bees that

exhibited sustained flight (voluntarily or agitated) for at least

1 min. Since a limited number of bees were selected, we

combined bees into the following life stage categories: hive

bees: 1 day old, 2 days old, 3–4 days old, 8–12 days old;

foragers: 1 day of foraging experience, 4–5 days of foraging

experience, 8–10 days of foraging experience. Body

weights (mean ± SEM) fluctuated across life stages,

although not significantly (ANOVA; F6,89 = 2.0, P =

0.07): 1 day old: 115 ± 6 mg, 2 days old: 119 ± 4 mg,

3–4 days old: 142 ± 6 mg, 8–12 days old: 128 ± 4 mg,

1 day of foraging experience: 120 ± 6 mg, 4–5 days of

foraging experience: 112 ± 6 mg, 8–10 days of foraging

experience: 126 ± 6 mg. The average daily outdoor tem-

perature (± SEM) at 11:00 on days that we performed the

VCO2
analyses was 25.4 ± 1.2�C, and mean flight metabolic

rates for each day were not significantly correlated

with daily temperatures (ANOVA regression; F1,5 = 2.6,

P = 0.17).

Flight metabolic rates were also measured in 2006 in

bees of different ages; however, a technical problem with

the VCO2
analyzer throughout the 2006 experiment pre-

vented us from considering the data as reliable. We thus do

not report these data even though a trend consistent with

the 2005 data was observed.

Flight muscle enzyme activity

In both experiments (2005 and 2006), hive bees and for-

agers of different ages and foraging experiences collected

from the hive were anesthetized on ice. We then removed

their thoraxes and immediately placed them in liquid

nitrogen. Subsequently, all thoraxes were stored at -80�C

and later homogenized as described previously (Schippers

et al. 2006). Briefly, whole thoraxes were powdered using a

liquid N2-cooled mortar and pestle and homogenized on ice

using a glass on glass homogenizer for 1 min in 20 vol-

umes of extraction buffer consisting of 75 mM potassium

phosphate (pH 7.3) and 10 mg/ml Lubrol� (Suarez et al.

1996). All enzymes were measured at 37�C in a Spectro-

max Plus 384, 96-well microplate reader (Molecular

Devices, Sunnyvale, CA, USA). Assays were performed in
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triplicate and control rates without substrate were deter-

mined for each assay.

Enzyme activities of cytochrome c oxidase (COx),

phosphofructokinase (PFK), and hexokinase (HK) were

measured on fresh homogenates. Enzyme activities of

pyruvate kinase (PK) and citrate synthase (CS) were mea-

sured after having been frozen and thawed once and three

times, respectively. Nine or ten thoraxes were used for each

life stage. In 2005, we assessed flight muscle enzyme

activity in the following life stages (mean ± SEM of thorax

weights in mg are in parentheses, N = 9–10 per life stage):

hive bees: 1 day old (27.5 ± 0.3), 2 days old (27.4 ± 0.3),

3 days old (30.3 ± 0.5), 10 days old (28.6 ± 0.6); forag-

ers: 1 day of foraging experience (28.2 ± 0.4), 4–5 days of

foraging experience (28.8 ± 0.6) and 8–10 days of forag-

ing experience (30.3 ± 0.9). In 2006, we focused primarily

on hive bees and assessed flight muscle enzyme activity in

the following life stages (mean ± SEM of thorax weights in

parentheses, N = 10 per life stage): hive bees: 1 day old

(29.9 ± 0.5), 2 days old (29.4 ± 0.5), 3 days old (31.3 ±

0.7), 8 days old (31.3 ± 0.5), 12 days old (32.3 ± 0.3);

foragers (unknown foraging experience): 26 days old

(30.8 ± 0.3). Assay conditions were as described previ-

ously (Schippers et al. 2006). Briefly, COx 50 mmol l-1

potassium phosphate (pH 7.5), 50 lmol l-1 cytochrome c,

PFK 10 mmol l-1 fructose-6-phosphate (F6P) (omitted in

control), 1 mmol l-1 ATP, 0.15 mmol l-1 NADH, 2 mmol l-1

AMP, 10 mmol l-1 MgCl2, 100 mmol l-1 KCl, 5 mmol l-1

dithiothreitol (DTT), 1 U aldolase, 5 U triose phosphate

isomerase and 5 U a-glycerophosphate dehydrogenase, in

50 mmol l-1 imidazole (pH 7.4); HK 5 mmol l-1
D-glu-

cose (omitted in control), 4 mmol l-1 ATP, 10 mmol l-1

MgCl2, 100 mmol l-1 KCl, 0.5 mmol l-1 NADP,

5 mmol l-1 DTT, 1 U glucose-6-phosphate dehydroge-

nase, in 50 mmol l-1 HEPES (pH 7.0); PK 5 mmol l-1

phosphoenol pyruvate (omitted in control), 5 mmol l-1

ADP, 2.5 mmol l-1 MgCl2, 0.15 mmol l-1 NADH,

10 mmol l-1 fructose-1,6-phosphate, 100 mmol l-1 KCl,

9.25 U lactate dehydrogenase, in 50 mmol l-1 imidazole

(pH 7.4); CS 0.5 mmol l-1 oxaloacetate (omitted in con-

trol), 0.09 mmol l-1 acetyl-CoA, and 0.1 mmol l-1 dithi-

obisnitrobenzoic acid in 20 mmol l-1 Tris (pH 8.0).

Fractional velocity of enzymes

Fractional velocity of enzymes was estimated only in the

2005 experiment in bees from which both hovering flight

metabolic rates and flight muscle enzyme activities were

measured. Life stages are as follows: hive bees: 3–4 days

old; foragers: 1 day of foraging experience, 4–6 days of

foraging experience and 8–10 days of foraging experience.

Briefly, fractional velocity of enzymes were calculated by

dividing the maximal enzyme activity (Vmax) measured in

vitro by the in vivo flux rate of metabolic pathways, mul-

tiplied by 100 (Suarez et al. 1996). The in vivo flux rates of

pathways were determined using CO2 production rates

converted into lmol min-1 g-1 of glycolytic flux rate,

Krebs cycle rate, and electron transport chain rate as

described in Suarez et al. (1996).

Protein identification and abundance of protein bands

Frozen thoraces from the 2005 experiment were homo-

genized using a motorized homogenizer and myofibrillar

isolation was performed as described previously (Churcott

et al. 1994) with the following modifications: (1) a protease

inhibitor cocktail (Complete Mini, Roche Diagnostics,

Indianapolis, IN, USA) was added to all solutions instead

of PMSF, (2) thoraces were homogenized in 500 ll of

solution A (25 mmol l-1 imidazole, 25 mmol l-1 KCl,

5 mmol l-1 EDTA, 1 mmol l-1 DTT, protease inhibitor

cocktail) and (3) samples were incubated for 10 min on ice

in solution B (50 mmol l-1 imidazole, 25 mmol l-1 KCl,

1 mmol l-1 EGTA, 22 lmol l-1 CaCl2, 0.5% Triton

X-100, 1 mmol l-1 DTT, protease inhibitor cocktail).

Protein concentration was determined with the bicinchon-

inic acid assay (Thermo Scientific, Rockford, IL, USA) and

samples were diluted to 5 lg of protein in 20 ll of solution

D (50 mmol l-1 imidazole, 100 mmol l-1 KCl, protease

inhibitor cocktail) and 5 ll of loading buffer (48 mmol l-1

Tris–HCl pH 6.8, 4% glycerol, 3.2% SDS, 600 mmol l-1

2-mercaptoethanol, 1.6% bromophenol blue). Samples

were then denatured by boiling for 5 min, loaded onto a

12% SDS-polyacrylamide gel (Bio-Rad), and electropho-

resed for * 5 h and 30 min at 85 V. Gels were then fixed

in 40% methanol and 10% acetic acid for 15 min, stained

with SYPRO-ruby stain (Invitrogen, Eugene, OR, USA)

overnight, and washed twice in 10% methanol, 7% acetic

acid for 1 h. Two protein bands of apparent molecular mass

within the range of Troponin T isoforms (* 50 kDa) and

one protein band within the range of actin (* 42 kDa)

were manually cut from one gel and subjected to in-gel

tryptic digestion and nano electrospray quadropole time of

flight mass spectroscopy analysis (nanoES Q-TOF) as in

Schippers et al. (2006). Imaging of gels was carried out

using the Perkin Elmer Pro-Express gel imaging system

and quantification of protein bands were determined with

Phoretix 2DTM software (Nonlinear Dynamics), which

combines both pixel density and area of band to quantify

band volume. Volume values of each band were normal-

ized to actin to control for any loading differences.

Statistical analyses

Changes in hovering flight metabolic rates and Vmax of

each enzyme were determined by performing a one-way
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analysis of variance (ANOVA; SPSS version 12.0, SPSS

Inc., Chicago, IL, USA) followed by post hoc analyses

using either Hochberg’s GT2 test when homogeneity of

variance was assumed (Levene’s test, P [ 0.07) or Games–

Howell test when variances were expected to be unequal

(Levene’s test, P \ 0.07). Changes in fractional velocity of

each enzyme were also analyzed using a one-way ANOVA

and post hoc analyses were performed using either the

Tukey test (equal variances) or the Dunnet T3 test (unequal

variances). Troponin T isoforms abundance was analyzed

with the non-parametric Kruskal–Wallis test and post hoc

Mann–Whitney U tests with Bonferroni correction.

Results

Flight metabolic rate

Generally, whole-body and mass-specific flight metabolic

rates showed similar trends (Fig. 1). Flight metabolic rates

first increased relatively early in life, and were then further

enhanced when bees became foragers. A significant 68%

increase in whole-body metabolic rates occurred by 3–4

days of age (Games–Howell; P = 0.001). Subsequently,

little changes were observed in hive bees as there were no

significant differences between 3 to 4-day-old and 8 to

12-day-old hive bees. The onset of foraging was associated

with enhanced flight metabolic rates but no significant

changes were found between 3 to 4-day-old hive bees and

first-day foragers (Games–Howell; P [ 0.9). On the other

hand, foragers generally had higher flight metabolic rates

than hive bees. Foragers with 4–5 days of foraging expe-

rience (mature foragers) achieved significantly higher

mass-specific metabolic rates than hive bees of any age

(Games–Howell; P B 0.041). However, only non-signifi-

cant increases were observed in whole-body metabolic

rates between mature foragers and 3 to 4-day-old hive bees

(Games–Howell; P = 0.4). In addition, no significant

changes were found among foragers of differing foraging

experience even though hovering metabolic rates were

enhanced in the first 5 days of foraging.

Flight muscle enzyme activity

In both 2005 and 2006, the Vmax of all enzymes (COX, CS,

PK, PFK and HK) increased early in life (Figs. 2, 3).

However, little changes were observed either during the

transition from hive bees to foragers or with increased

foraging experience (Fig. 2). In 2005, the Vmax of all

enzymes except PK significantly increased between 1-day-

old and 3-day-old hive bees (Hochberg’s GT2 post hoc

test; P B 0.004). More specifically, 58, 55, 91, and 43% of

the total lifetime increases in COx, CS, PFK, and HK Vmax,

respectively, occurred by the age of 3 days. As well, most

of the increase in PK Vmax (66% of total increase) occurred

by 10 days of age (Hochberg’s GT2; P = 0.001). Thus, for

all enzymes measured in 2005, most of the increase in

enzyme flux capacity occurred early in life, in hive bees

younger than 10 days old, and similar results were found

for all enzymes measured in our 2006 experiment. In 2006,

the Vmax of PFK and HK also significantly increased

between day 1 and day 3 (Games–Howell and Hochberg’s

GT2, respectively; P \ 0.001) and all other enzymes sig-

nificantly increased by day 8 (between day 1 and day 8;

Hochberg’s GT2; P B 0.007). In 2005, the increases in PK

and HK Vmax occurred gradually between 3-day-old hive

bees and first-day foragers (Hochberg’s GT2; P = 0.002

and P = 0.004, respectively). Conversely, COx Vmax sig-

nificantly decreased between 10 day-old hive bees and

first-day foragers (Hochberg’s GT2; P = 0.015). No

significant changes in Vmax in any of the other enzymes

(CS, PK, PFK, HK) were observed during the transition

from hive bees to foragers (between 10 days old bees and
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first-day foragers; Hochberg’s GT2; P C 0.29), and no

significant changes in Vmax of any enzyme were observed

with increased foraging experience (between 1 day of

foraging experience and 4–5 days of foraging experience;

Hochberg’s GT2; P C 0.6). In the 2006 experiment, no

significant changes in Vmax of all enzymes except COx

were found after 8 days of age. COx Vmax significantly

decreased between 8 and 12 days of age (Hochberg’s GT2;

P = 0.007) and then further decreased in 25-day-old for-

aging bees (Hochberg’s GT2; P \ 0.001).

Fractional velocity of enzymes

Generally, the fractional velocity of most enzymes slightly

increased in life until reaching a peak in foragers of

4–6 days of foraging experience, and then decreased in

more experienced foragers (8–10 days of foraging experi-

ence) (Fig. 4). Fractional velocity of COx and PFK sig-

nificantly increased by 43 and 32%, respectively, between

3 to 4-day-old hive bees and foragers of 4–6 days of

foraging experience (Tukey; P \ 0.02). Conversely, the

fractional velocity of PK significantly decreased between 3

to 4-day-old hive bees and first-day foragers (Dunnet T3;

P = 0.046). Significant decreases in fractional velocity of

PFK and CS were also observed at the end of a bee’s life,

in foragers with 8–10 days of foraging experience com-

pared to foragers with 4–6 days of foraging experience

(Tukey; P B 0.03). On the other hand, no changes in the
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lifetime fractional velocity of HK were found (ANOVA;

F3,35 = 2.4, P = 0.08).

Troponin T isoform abundance

Typical 1-D gels showing the myofibrillar fraction of

thorax samples from different lifestages are presented in

Fig. 5. NanoES Q-TOF mass spectroscopy identified one

protein band (apparent molecular weight of 42 kDa) as

actin and two protein bands (apparent molecular weights of

48 and 52 kDa) as troponin T (isoform identity could not

be determined). Detailed results of the identification anal-

ysis are presented in Table 1. Both the 48 and 52 kDa

protein bands were contaminated with actin: NCBI acces-

sion no. gi|4220623, MOWSE scores = 105 (50) and 37

(34), respectively (minimum scores for significant homol-

ogy shown in parentheses, P \ 0.05); and there were some

evidence for the 52-kDa protein band to be contaminated

with ATP synthase subunit alpha, mitochondrial (NCBI

accession no. gi|5921205), but the MOWSE score was

barely significant: MOWSE score = 40 (39).

Bee thoraces of all lifestages contained both troponin T

bands except for 1-day-old bees, which lacked the 48-kDa

troponin T band. This lower molecular weight troponin T

band appeared at 3 days of age; however, no significant

changes in intensity were observed between lifestages

(Mann–Whitney U with Bonferroni correction: P C 0.07).

Likewise, no significant changes in intensity between

lifestages were found in the 52-kDa troponin T band

(Mann–Whitney U with Bonferroni correction: P C 0.1;

Table 2).

Discussion

This study attempted to elucidate ontogenic changes in

flight metabolism and muscle biochemistry of honeybees,

taking into account both caste transition (hive worker to

forager) and days of foraging experience. Honeybees’

flight metabolic rates were rapidly enhanced early in life

(by 3 days of age). This increase could be explained by the

concurrent increases in flight muscle in vitro metabolic flux

capacities, as most of the increases in enzymatic capacity

of several aerobic and regulatory glycolytic enzymes also

occurred by 3 days of age. In addition, changes in struc-

tural components of flight muscles were also observed at
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the same time. A troponin T isoform, not present in 1-day-

old bees first appeared by the age of 3 days. Hive bees’

flight metabolic rates, and thus estimates of flux through

glycolysis and oxidative phosphorylation, remained

unchanged thereafter up until the onset of foraging, where

it gradually increased as bees gained foraging experience

until reaching a peak in mature foragers (4–5 days of for-

aging experience). These increases could not be adequately

explained by changes in flight muscle metabolic capacity,

as the Vmax of all enzymes measured either remained

unchanged or decreased (COx) with foraging experience.

In fact, we found that the fractional velocity (v/Vmax) of

most enzymes was higher in mature foragers compared to

hive bees and significantly so for COx and PFK. Thus,

foragers seem to operate most of their metabolic enzymes

at a higher fraction of their enzymatic capacity (Vmax) to

support elevated flight metabolic rates. Moreover, since our

measurements of in vivo flux represent underestimates of

true maximum rates, we assume that foragers in the field

who undertake forward flight and carry heavy loads of

nectar or pollen operate at a much higher fraction of their

Vmax than reported here and thus in vivo flux rates approach

in vitro enzymatic capacities.

Flight metabolic rates

Knowledge on maximum metabolic rates in hive bees

younger than 4 days of age is scarce (Harrison and Fewell

2002; Stabentheiner et al. 2003) probably because, at this

age, bees are not able to sustain flight for longer than a few

seconds. It is important to note that to get a measure of

flight metabolic rate, we forced bees to sustain flight by

agitating the metabolic chamber every time they landed. In

bees younger than 4 days, the metabolic chamber was

almost constantly agitated because young bees were not

able to hover for longer than a few seconds. Previous

research (Suarez et al. 1999) has shown that metabolic

rates achieved during agitated flight are significantly higher

than those reached while hovering. We thus believe that

our values of agitated flight for these bees represent rea-

sonable estimates of flight metabolic rate at this age. On the

other hand, hovering flight metabolic rates in bees older

than 4 days of age are surely underestimates of maximal

metabolic rates. For instance, heavy loads of forage are

known to increase flight metabolic rates (Wolf et al. 1989;

Feuerbacher et al. 2003). In fact, bees carrying extra loads

during free directional forward flight in a wind tunnel

yielded up to 40% higher metabolic rates than unladen bees

(Wolf et al. 1989). True maximal metabolic rates are dif-

ficult to determine in insects and have not been determined

previously for honeybees. However, measurements of

hovering flight metabolic rate of carpenter bees in low air

densities (mixture of O2, N2 and He) were found to be

about 30% higher than in normal air (Roberts et al. 2004).

In the present study, bees were partially laden (20–40%

heavier than unladen state) and mass-specific VCO2
values

Table 1 Identification results of protein bands by nanoES Q-TOF mass spectroscopy

Protein band

apparent Mr

Protein

description

NCBI accession

no.

Peptide sequence Mr (exp.) Mr (calc.) MOWSE

scorea

42 kDa Actin (Apis mellifera) gi|4220623 SYELPDGQVITIGNER 1789.79 1789.88 79 (43)

gi|66509789 GYSFTTTAER 1131.39 1131.52 49 (46)

gi|66509789 QEYDESGPGIVHR 1485.58 1485.68 62 (44)

gi|66509789 VAPEEHPVLLTEAPLNPK 1952.99 1953.06 44 (37)

48 kDa Troponin T (Apis mellifera) gi|94400893 DLAGNLTSAQLER 1386.68 1386.71 78 (51)

52 kDa Tropornin T (Apis mellifera) gi|94400893 DLAGNLTSAQLER 1386.59 1386.71 87 (51)

Mr refers to apparent molecular mass on gel, see Fig. 5, Mr (exp.) experimentally determined molecular mass and Mr (calc.) calculated molecular

mass for the peptide sequence
a Values in parentheses indicate MOWSE score required for significant homology (P \ 0.05)

Table 2 Mean ± SEM of troponin T bands intensities expressed as % of actin intensity of honeybee thoraces at different ages and foraging

experience

Troponin T bands Age (days) Foraging experience (days)

1 3 10 2 7–9

48 kDa band intensities (% actin) n.d. 16.0 ± 2.2 11.4 ± 2.7 6.8 ± 1.4 9.2 ± 1.4

52 kDa band intensities (% actin) 15.8 ± 3.0 2.9 ± 0.6 3.8 ± 1.2 4.6 ± 1.6 4.8 ± 1.9

n.d. Non-detectable
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of mature foragers were approximately 6 and 15–25%

lower than those reported in previous studies for partially

laden and unladen foragers, respectively (Harrison 1986;

Coelho and Mitton 1988; Wolf et al. 1989; Suarez et al.

1996; Roberts and Harrison 1999; Feuerbacher et al. 2003;

Woods et al. 2005). Thus, flight metabolic rates reported

here are evidently lower than the true maximum metabolic

rate that can be achieved by honeybee foragers. Yet, sig-

nificantly higher metabolic rates were still observed in

foragers compared to hive bees. If we assume, as previous

studies have (Suarez et al. 1996, 1997), that maximal

metabolic rates in foragers are at least 30% higher than the

ones measured, we would expect even greater differences

in flight VCO2
; and hence in the calculated in vivo flux,

between hive bees and foragers.

Flight muscle metabolic enzymes

Since honeybee flight is obligatory aerobic and is fueled

entirely by carbohydrates (hexoses), we measured three

enzymes (PK, PFK, HK) important for determining the

overall flux of glycolysis (Hochachka and Somero 2002),

an aerobic enzyme from the Krebs cycle (CS) and from the

electron transport chain (COx). Although Vmax represents

the maximum flux that can be achieved at a particular step

of a biochemical pathway in vitro, it can also provide

insights into flux capacity in vivo (Newsholme and Crab-

tree 1986; Suarez et al. 1996, 1997). Vmax is a function of

enzyme concentration and catalytic efficiency (kcat), and

since kcat is generally constant (Suarez et al. 2000), Vmax

corresponds to the functional concentration of enzymes.

Most of the increase in activity of all enzymes occurred

early in life and then either remained unchanged or grad-

ually increased up until reaching a peak before or at the

onset of foraging. Honeybees thus acquire most of their

flight muscle metabolic machinery well before undertaking

foraging activities. A previous study reported a rapid

increase in the Vmax of PK and CS in the first 4 days and no

further increases beyond 5 days of age (Harrison 1986).

Similarly, our prior study (Schippers et al. 2006) showed

either modest (CS) or no significant changes (HK, PFK,

PK, COx) in Vmax between 11- and 15-day-old hive bees

and foragers (various ages). The rapid increases in glyco-

lytic flux and oxidative capacity of flight muscles early in

life coincided with the increases in metabolic rates and the

appearance of flight ability, which occurs around 2–4 days

of age (Harrison and Fewell 2002; Roberts and Elekonich

2005). However, when bees start foraging and gain for-

aging experience, they elevate fluxes through glycolytic (as

indexed by hovering metabolic rate) and aerobic pathways

without increasing the Vmax of enzymes. Flying honeybees

are known to attain one of the highest mass-specific met-

abolic rates ever measured in the animal kingdom and these

high in vivo flux rates are thought to be achieved not only

by increasing enzyme content but also by operating

enzymes at higher fractional velocities than other animals

(Suarez et al. 2000). Despite the fact that our measure of in

vivo flux is an underestimate of true maximal flux rates

achievable, we can still conclude that COx, PFK, and HK

operate at a higher percentage of Vmax in mature foragers

compared to hive bees (although not significantly so for

HK). Yet, these fractional velocity values agree with the

ones previously reported in honeybee workers (Suarez

et al. 1996). We can expect that honeybees carrying extra

loads (pollen or nectar), which lead to up to 40% higher

metabolic rates (Wolf et al. 1989), operate their enzymes

even closer to capacity (for example, HK might be

expected to operate at almost 100% of Vmax). It is possible

that honeybees have reached close to an upper limit in the

biochemical capacity of flight muscles (Suarez 2000;

Suarez et al. 1996). Honeybee flight muscles are highly

aerobic: mitochondria account for approximately 43% of

fiber volume whereas myofibrils occupy roughly 54%

(Suarez et al. 2000). Further increases in aerobic enzyme

content to accommodate high flux rates would require

greater mitochondrial densities, which would come at the

detriment of myofibrils and consequently power output

(Suarez 2000; Suarez et al. 1997, 2000). Moreover, since

myofibrils and mitochondria account for almost all of the

cytosolic space, glycolytic enzymes and glycolytic inter-

mediates are packed in the same extramitochondrial space

as myofibrils, which may lead to specific interactions that

affect the regulation of glycolysis (Suarez 2000).

While higher in vivo flux rates in foragers can be

explained by either elevated or stable enzymatic capacities

(with high fractional velocities), a decrease in Vmax, on the

other hand, seems counterintuitive. Unlike the other

enzymes investigated in this study, COx Vmax dramatically

decreased in foragers in both the 2005 and 2006 experi-

ments. Moreover, our previous study conducted in 2004

showed similar results (Schippers et al. 2006). Highly

oxidative muscles must deal with an elevated production of

reactive oxygen species (ROS), usually by increasing

antioxidant defense to prevent oxidative damage (Powers

et al. 1999). In fact, earlier proteomic analyses revealed

that honeybee foragers have increased antioxidant defenses

compared to hive bees (Schippers et al. 2006; Wolschin

and Amdam 2007). However, this increase may not be

sufficient to cope with the high production of ROS during

foraging flights. It is possible that the extremely high

aerobic demands of flight and the associated spatial

constraints to further increase antioxidant enzymes may

prevent adequate antioxidant defense in honeybee foragers.

This supports the notion that senescence and ROS damage

may not correlate with chronological age in honeybees

(Münch et al. 2008). The decrease in COx Vmax could thus
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be due to oxidative damage. Several studies have docu-

mented the vulnerability of complex IV/COx to oxidative

stress (Benzi et al. 1991; Schwarze et al. 1998; Ferguson

et al. 2005) and experimental increases of H2O2 in Dro-

sophila melanogaster have been found to decrease COx

activity (Schwarze et al. 1998). Moreover, age-related

declines in COx activities have been found in the absence

of changes in COx I protein abundance, suggesting that the

decrease in COx activity is not the result of protein abun-

dance but of oxidative inactivation (Ferguson et al. 2005).

Flight muscle structural components

Honeybees contain several troponin T isoforms, some of

which are tissue specific and/or developmentally deter-

mined (Domingo et al. 1998; Herranz et al. 2005). Previous

findings indicate several troponin T transcripts in honeybee

thorax, with one predominantly found in indirect flight

muscles: exon-10A containing transcript lacking all

50 region alternatively spliced exons (Herranz et al. 2005).

We previously found an increase in troponin T isoform(s)

containing exon 10A (troponin T 10A) in mature foragers

compared to 11–15 days old hive bees (Schippers et al.

2006). In the present study, we could not adequately

quantify specific isoforms. However, we report here a shift

in the relative abundance of troponin T isoforms by 3 days

of age. This shift is consistent with the findings of a pre-

vious study (Domingo et al. 1998) and occurs concurrently

with the metabolic development of muscles and flight

capability observed here and elsewhere (Harrison 1986;

Harrison and Fewell 2002; Schippers et al. 2006). In

dragonflies, variations in the relative abundance of troponin

T transcripts have been correlated with calcium sensitivity

and maximum specific power output of muscles (Marden

et al. 2001). Hence these data suggest a possible role for the

differential abundance of troponin T isoforms in affecting

honeybee flight. Further studies on age-related variation in

troponin T isoforms and its functional role in flight muscles

are needed.

Conclusion

This study demonstrates lifetime changes in honeybee

flight metabolism and flight muscle biochemistry that are

both segregated by age and foraging experience. Our

results suggest that most of the flight muscle metabolic

development occurs within a few days after eclosion,

which coincides with the appearance of sustained flight

capability. No further increases in metabolic enzyme

capacities were observed at the onset of foraging or with

increased foraging experience even though mature foragers

showed significantly higher in vivo metabolic flux rates.

These findings reinforce current concepts on the upper

limits of biochemical capacities of hymenopteran flight

muscles and suggest that honeybee foragers sustain high

flight metabolism by operating enzymes in vivo closer to

capacity (Vmax).
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