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Abstract

Many studies of contingency judgments have used a task in which, on each trial, the participant is free either to respond or not to respond, and
an outcome may, or may not, be presented. Typically, the experimenter specifies a nominal value for the contingency between responding and
outcome, but the actual values of a variety of variables experienced by a particular participant depend on that participant’s frequency of responding.
The results of computer simulations of various strategies for implementing the contingency manipulation, and the results of an experiment, indicate
that the same nominal contingency value will lead to considerable variability in the actual contingency experienced by participants. Moreover,
nominal contingency manipulations are confounded with the probability that the subject experiences an outcome. While researchers might be
aware of these issues, not enough attention has been paid to their potential impact.
© 2006 Published by Elsevier B.V.
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“Darwin’s legacy includes evidence for impressive continuity
of both body and mind among animal species, and experi-
mental psychologists have attempted to identify principles
of generality.” (Church, 1993, p. 171)

There is considerable interest in the study of contingency
assessment. Some investigators have applied the contingency
assessment task to understanding medical diagnoses (e.g., Allan
et al., 2005) and depression (e.g., Alloy and Abramson, 1979;
Allan et al., in press). Others have been interested in theoretical
analyses of the task (e.g., Allan and Tangen, 2005; De Houwer
and Beckers, 2002). Contingency assessment is also an area that
has drawn the attention of researchers sympathetic to Church’s
(1993) argument for the mutual benefits that human and nonhu-
man research offer one another. Researchers, following the lead
of Dickinson et al. (1984) realized that contingency assessment
tasks (studied in humans) are structurally similar to traditional
learning tasks (typically studied in nonhuman animals), and
theoretical analyses of these learning tasks may be profitably
applied to understanding contingency assessment (see Allan,
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1993). The purpose of this article is to elaborate the implications
of one facet of learning research that has not been incorporated
into the contingency assessment literature.

Operant learning researchers have noted that the manipula-
tion of contingencies of reinforcement is complicated by the
fact that the participant – not the experimenter – controls the
occurrence of the response. Thus, the experimenter’s objective of
presenting (or not presenting) a reinforcement when a response
does (or does not) occur is a challenge. Contingency assessment
researchers have used similar manipulations but generally have
been oblivious to the challenge.

Contingency assessment tasks can be divided into two cate-
gories, passive and active. Cues predict the presence (or absence)
of outcomes in the passive task, whereas actions produce (or pre-
clude) outcomes in the active task. An example of a passive task
is the pairing of the consumption of a food (e.g., strawberries)
with the appearance of an allergic reaction. On each trial, the
participant is shown whether a hypothetical patient consumed
strawberries or did not consume strawberries, and then is shown
whether the allergic reaction occurred or did not occur. The par-
ticipant’s task is to rate the strength of the relationship between
the consumption of strawberries and the occurrence of the aller-
gic reaction. In an active task, the participant has the option
of making, or not making, a designated response on each trial.

0376-6357/$ – see front matter © 2006 Published by Elsevier B.V.
doi:10.1016/j.beproc.2006.09.007
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Table 1
The 2 × 2 matrix for the input–outcome pairings in the contingency task

O ∼O

I a b
∼I c d

The letters in the cells (a, b, c, d) represent the joint frequency of occurrence of
the four input–outcome combinations in a block of trials.

For example, on each trial the participant decides to press a
button or not to press a button, and then a light bulb is illu-
minated or is not illuminated. The participant’s task is to rate
how much control he or she has over the illumination of the
light. This active task most commonly involves discrete trials.
In another version of the active task, often referred to as the
free-operant procedure, trials are not delineated (e.g. Wasserman
et al., 1983). A critical analysis of inherent problems with the
free-operant task has previously been provided (e.g., Buehner
and May, 2003). In the present paper, we restrict our discussion
to the discrete-trial version of the active task not only because
of greater complexities confronting the free-operant version,
but also because much of the research uses the discrete-trial
format.

Table 1 presents the 2 × 2 contingency matrix applicable to
both task-types. The input variable (the cue in the passive task
or the response in the active task) either occurs (I) or does not
occur (∼I), and the outcome variable (the allergic reaction in
the example of the passive task or the illumination of the bulb
in the example of the active task) either occurs (O) or does not
occur (∼O). The passive and active tasks differ with regard to
who has control over the input variable. In the passive task,
the experimenter determines how often the cue is presented,
whereas in the active task the participant determines how often
the response is made. The letters in the cells of the matrix (a,
b, c, d) represent the joint frequency of occurrence of the four

input-outcome combinations. The probability of the input:

P(I) = a + b

a + b + c + d
(1)

and the probability of the outcome:

P(O) = a + c

a + b + c + d
(2)

and the contingency between the input and the outcome:

�P = P(O|I) − P(O| I) = a

a + b
− c

c + d
(3)

can be varied in any experiment. However, P(I), P(O), and �P
cannot be varied independently of each other. Knowing how
these variables interact is important in assessing their effect on
the participant’s evaluation of the relationship between the two
binary variables.

Consider the nine matrices in Table 2. In the three matrices
in the top row, P(I) is constant at 0.5, �P is constant at 0.5,
and P(O) varies [P(O) = 0.3 in the left matrix, P(O) = 0.5 in the
middle matrix, and P(O) = 0.7 in the right matrix]. In the middle
row, P(I) is increased to 0.8, and �P is maintained at 0.5. The
constraint of increasing P(I) and maintaining �P forces P(O) to
increase relative to the top row. In the bottom row, P(I) is again
increased to 0.8, and now P(O) is maintained (0.3, 0.5, and 0.7).
The constraint of increasing P(I) and maintaining P(O) forces
�P to decrease relative to the top row. We prove in Appendix A
that P(O) is a linear function of P(I) with slope �P and intercept
P(O|∼I):

P(O) = �P × P(I) + P(O| ∼ I) (4)

In the passive task, the experimenter is in control of P(I) and
must decide whether �P or P(O) should be maintained as P(I) is
varied. Consider experiment 3 in Allan and Jenkins (1983) where
the passive task was used and there were two values of P(I), 0.5

Table 2
Matrices illustrating the relations among P(I), �P, and P(O)
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and 0.7. In that experiment, �P was maintained across P(I), and
therefore as P(I) increased from 0.5 to 0.7, P(O) also increased.
However, the selected values of P(I), P(O), and �P were the
same for each participant. The situation is more complicated in
the active task. Because the participant, not the experimenter,
is in control of P(I), there likely will be between-participant
variability in P(I). As Eq. (4) makes clear, P(O) and �P are
affected by P(I). That is, between-participant variability in P(I)
will result in between-participant variability in P(O) and �P.
Moreover, because the participant is in control of P(I), the row
frequencies of the 2 × 2 matrix cannot be preprogrammed, and
the experimenter must adopt an algorithm to program the trial
events that are dependent on the participant’s trial responses. As
we will show, the selection of a particular algorithm influences
the variability in P(O) and �P.

Many of the early studies concerned with contingency assess-
ment used versions of the active task. In more recent research, the
passive task has become more prevalent because of the control
it provides the experimenter over the value of the input variable
(see Dickinson, 2001). However, there are research questions
that require the active task.

For example, an interest in “depressive realism” has resur-
faced in the contingency literature (Allan et al., 2005, in press;
Msetfi et al., in press, 2005). It has been known for some time
(see Allan, 1993) that for a fixed �P, ratings of the relation-
ship between two binary variables often are not constant but
increase with P(O) – the phenomenon is termed the “outcome
density effect”. Alloy and Abramson (1979) concluded that
the outcome density effect is seen in nondepressed, but not
depressed individuals. Such resistance by depressives to con-
cluding that the contingency between a response and outcome
is increased when just the outcome density is increased was
termed “depressive realism”. Alloy et al. (1985) concluded that
this mood difference is found only in the active task where par-
ticipants are required to assess how much control they had over
the outcome. That is, in the active task, nondepressives dis-
play the outcome density effect and depressives do not, and
in the passive task both mood groups show the outcome den-
sity effect. Therefore, when investigating depressive realism,
it becomes especially important to understand the effect P(I)
has on the actual �P and P(O) values, because in the active
task the participant controls P(I) and the values can vary among
participants.

Examination of the literature indicates that few papers which
used the active task report actual �P.1 Rather, most only report
the programmed values. Those that do provide information about
actual �P report only mean �P values, and provide no informa-
tion about the variability in �P. Information about actual P(O)
and P(I) is even less frequently given, and again variability is not
addressed. Also, the algorithm used to present the trial events
is usually not explicitly described. Thus, in many studies using

1 A notable exception is the research reported by Shanks and Dickinson (e.g.,
Dickinson et al., 1984; Shanks, 1985, 1987, 1989; Shanks and Dickinson, 1987;
Shanks et al., 1989). These authors present mean actual �P values which differ
little from the nominal values. However, variability in the actual values of �P
was not reported in these studies.

Table 3
Values of �PN, P(O|I)N, P(O|∼I)N, and P(O)N used in the experiment

�PN P(O|I)N P(O|∼I)N P(O)N

0
0.2 0.2 L
0.5 0.5 M
0.8 0.8 H

0.5
0.55 0.05 L
0.75 0.25 M
0.95 0.45 H

the active task, although we are told the nominal values of �P
and P(O), we know little about the actual values.

In the present paper we describe two algorithms and we
present simulated data produced by these algorithms. We then
present data from an active task which used the algorithm that
produced the least variability in �P and P(O). For both the simu-
lated and the experimental data, we provide mean and variability
information about actual �P and actual P(O).

1. Simulations of the active task

We use the subscript “N” to denote a nominal value and the
subscript “A” to denote an actual value. Our simulations are
based on 40-trial sequences. P(I) was varied from 0.1 to 0.9
in steps of 0.1. We used two values for �PN (0 and 0.5). For
each �PN, there were two pairs of conditional probabilities,
P(O|I)N and P(O|∼I)N. These values are shown in Table 3. As
the pairs of conditional probabilities increase in value so does
P(O)N (outcome density). Thus for each value of �PN, there are
three levels of outcome density, low (L), medium (M), and high
(H).

Since the task requires the participant to judge the contin-
gency between their input and the outcome, the algorithms focus
on constraining �PA with variations in P(I) and P(O)N.2 For
both algorithms, on I trials the selection of whether O or ∼O
occurs is determined by the value of P(O|I)N, and on ∼I tri-
als the selection of whether O or ∼O occurs is determined by
P(O|∼I)N. The two algorithms differ in how this selection is
made.

1.1. Constrained algorithm

This algorithm is based on the procedure described by Alloy
and Abramson (1979). It was also used by Allan and Jenkins
(1980, 1983) and Msetfi et al. (2005, accepted).3 In these exper-
iments, two outcome arrays, consisting of randomly ordered O
and ∼O values, were generated at the beginning of a block of
trials prior to the start of data collection. The (O|I) outcome
array was determined by the value of P(O|I)N, and the (O|∼I)
outcome array was determined by the value of P(O|∼I)N. The
number of elements in each array is equal to the total number of

2 We have also explored a method that constrains P(O) perfectly. However, it
is of limited use because it applies only to �P = 0.

3 Personal communication. The algorithm is not described in the published
papers.
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trials. As an example, consider a condition with 40 trials where
P(O|I)N = 0.55, and P(O|∼I)N = 0.05 (and therefore �PN = 0.5).
There would be 22 O values and 18 ∼O values in the (O|I) out-
come array, and 2 O values and 38 ∼O values in the (O|∼I)
outcome array. Whether an outcome did, or did not, occur on
a particular trial was determined by a rule that depended on
input eventuality (i.e., the participant chose to respond or to not
respond). The rule specifies that on I trials the (O|I) array is
consulted and on ∼I trials the (O|∼I) array is consulted. Specif-
ically, if the participant responded on trial y then the value at
index y of the (O|I) array was selected, and if the participant did
not respond on trial y then the value at index y of the (O|∼I)
array was selected. This can be also described as a sampling
without replacement algorithm.

In our simulation of the constrained algorithm, the computer,
rather than the participant, generated the input. That is, at the
beginning of each simulation-run, an input array, determined by
the value of P(I), was generated. For example, if P(I) were 0.6,

Fig. 1. Mean �PA as a function of P(I) for the three levels of P(O)N, for �PN = 0
(A), and �PN = 0.5 (B). The bars indicate ±standard deviation.

there would be 24 I events and 16 ∼I events, randomly ordered,
in the input array. The simulation was run 1000 times for each
of the 54 combinations of P(I), �PN, and P(O)N: nine values of
P(I) × 2 values of �PN, ×3 values of P(O)N.

Fig. 1 presents mean �PA as a function of P(I) for each level
of P(O)N. The bars indicate ±1 standard deviation. Fig. 1A
shows the data for �PN = 0 and Fig. 1B shows the data for
�PN = 0.5. It is clear that while mean �PA = �PN, there is con-
siderable variability. Fig. 2 illustrates the nature of this variability
by plotting the standard deviation (SD�P) as a function of P(I).
When �PN = 0 (Fig. 2A), SD�P is a U-shaped function of P(I).
The minimal variability occurs when there is no response bias
[P(I) = P(∼I)]. Interestingly SD�P is highest for P(O)N = 0.5.
When �PN = 0.5 (Fig. 2B), SD�P is a U-shaped function of P(I)
for P(O)N = 0.5. For P(O)N = 0.3, SD�P tends to decrease with
increases in P(I), and for P(O)N = 0.7, SD�P tends to increase
with increases in P(I).

Fig. 3 presents mean P(O)A as a function of P(I) for each
level of P(O)N. The bars indicate ±1 standard deviation. Fig. 3A

Fig. 2. Standard deviations of mean �PA (SD�P) as a function of P(I) for the
three levels of P(O)N, for �PN = 0 (A), and �PN = 0.5 (B).



Aut
ho

r's
   

pe
rs

on
al

   
co

py

S. Hannah et al. / Behavioural Processes 74 (2007) 265–273 269

Fig. 3. Mean P(O)A as a function of P(I) for the three levels of P(O)N, for
�PN = 0 (A), and �PN = 0.5 (B). The bars indicate ±standard deviation.

shows the data for �PN = 0 and Fig. 3B shows the data for
�PN = 0.5. As specified in Eq. (4), mean P(O)A is a linear
function of P(I) with slope �PN and intercept P(O|∼I)N. The
variability is less than that observed in �PA. Fig. 4 illustrates
the nature of the variability in P(O)A by plotting the standard
deviation (SDP(O)) as a function of P(I). For both values of �PN,
SDP(O) is a inverted U-shaped function of P(I). SD�P is highest
when P(O)N = 0.5.

1.2. Unconstrained algorithm

This algorithm is similar to that used by Shanks and Dick-
inson (e.g., Shanks, 1985, 1987, 1989; Shanks and Dickinson,
1991; Shanks et al., 1989).4 In contrast with the constrained algo-
rithm, the unconstrained algorithm determines for each trial, de

4 Personal communication. The algorithm is not described in detail in the
published papers. For example, Shanks and Dickinson (1991) state “These prob-
abilities acted as parameters for a software probability generator. . .” p. 355.

Fig. 4. Standard deviations of mean P(O)A (SDP(O)) as a function of P(I) for
the three levels of P(O)N, for �PN = 0 (A), and �PN = 0.5 (B).

noveau, whether or not an outcome will be presented. For each
trial a random number is generated, and (depending on the value
of the number), an outcome is, or is not, presented. Whether
or not a particular randomly selected number is an instruction
to present an outcome is determined by the values of P(O|I)N
and P(O|∼I)N. Consider again the �PN = 0.5 example in which
P(O|I)N = 0.55, and P(O|∼I)N = 0.05. On each trial, a random
number between 0.01 and 1.00 is generated. If the participant
has responded, an outcome will be presented only if that ran-
dom number is ≤0.55. If the participant has not responded, an
outcome will be presented only if that random number is ≤0.05.
This can be thought of as a sampling with replacement algorithm.

As with the constrained algorithm, for each simulation-run a
40-trial input array, determined by the value of P(I), was con-
structed. On each trial, a random number S, between 0.01 and
1.00 was generated. On an I trial, O was selected if S < P(O|I)N;
otherwise ∼O was selected. On an ∼I trial, O was selected if
S ≤ P(O|∼I)N; otherwise ∼O was selected. The simulation was
run 1000 times for each of the 54 combinations of P(I), �PN,
and P(ON).
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The mean values of �PA and P(O)A were very similar to
those generated by the constrained algorithm. However, the vari-
ability was always greater.5

2. Experiment

We evaluated data collected from participants in an active
form of the contingency task to verify the variability trends
apparent in the simulations. Since the constrained algorithm
resulted in less variability in �PA and P(O)A, it was used in
the experiment.

This experiment is part of a larger project concerned with our
theoretical formulation which views the detection of a contin-
gency as similar to the detection of a signal (Allan et al., 2005).
This is not the focus of the present article, and only data that
relate to the simulations are reported here.

3. Method

3.1. Participants

The participants were 33 undergraduate students enrolled
in psychology courses at McMaster University who received
course credit. They had not been in other experiments concerned
with contingency judgments.

3.2. Apparatus

Macintosh computers were used to present stimuli and record
responses. The outcome variable was represented by a picture of
a light bulb centered on the top portion of the computer monitor.
The input variable was represented as a button located below the
light bulb.

3.3. Procedure

The instructions for the experiment were presented to the
participant on the computer monitor. In brief, participants were
told that the task was to determine how much control they had
over the illumination of a light bulb. On each trial they were to
decide whether or not to click the button. They would then see
whether or not the light bulb was illuminated. They were urged
to sample both response alternatives (click and no click). They
were told that after a series of 40 trials, they would be asked
to rate how much control they thought they had over the bulb
lighting up.

At the beginning of a block of 40 trials, an unilluminated light
bulb appeared on the computer monitor. A trial began with the
appearance of a button below the bulb for a maximum duration
of 3 s. The participant had the option of pressing the button
by clicking on it with the mouse or not pressing the button.
A button click was scored as an I event and no click within
the 3-s input period was scored as an ∼I event. On I trials, the
button disappeared as soon as it was clicked, and the 2-s outcome

5 The outputs of both algorithms is available from the authors.

interval began. The light bulb either turned on for 2 s (O trials)
or remained dark (∼O). On ∼I trials, the button disappeared at
the end of the 3-s input interval, and the 2-s outcome interval
began. Again, the light bulb either turned on for 2 s (O trials)
or remained dark (∼O). The dark light bulb remained on the
monitor during the intertrial interval. The beginning of the next
trial was signaled by the appearance of the button. At the end
of a block, participants rated how much control they had over
the illumination of the light bulb. The ratings were made on a
horizontal scrollbar that ranged from 0 (no control) on the left
to +100 (complete control) on the right. Participants made their
ratings by moving the scrollbar left and right with the mouse.

There were two values of �PN (0 and 0.5), and three values
of P(O)N for each �PN value (see Table 3). �PN was varied
between participants. There were 16 participants in the �PN = 0
group and 17 participants in the �PN = 0.5 group. Within each
group, participants experienced the three values of P(O)N in a
random order. A different light bulb was used for each level of
P(O)N.

4. Results and discussion

Table 4 shows the mean values of �PA, P(O|I)A, P(O|∼I)A,
P(I)A, and P(O)A for each of the six conditions in the experiment.
As others have reported, the mean values of �PA, P(O|I)A, and
P(O|∼I)A are similar to the nominal values (�PN, P(O|I)N, and
P(O|∼I)N, respectively). Overall there is a bias for choosing to
press the button; i.e., P(I) tends to be larger than P(∼I). As Eq. (4)
specifies for�PN > 0, a bias for P(I) results in increased values of
P(O)A relative to unbiased responding (i.e., P(I) = P(∼I) = 0.5).

Fig. 5 plots P(I) for each participant for the three levels of
P(O)N. The data for �PN = 0 are in Fig. 5A and the data for
�PN = 0.5 are in Fig. 5B. Each symbol represents the value
for an individual participant. What is striking about Fig. 5 is
the considerable variability in P(I) both among participants and
within a participant for the three levels of P(O)N. Fig. 6 shows
similar plots for �PA. Note that the range of the y-axis is dif-
ferent in the two panels. Although mean �PA deviated little
from �PN (Table 4), there is considerable variability among
the participants. For example, in each outcome density con-
dition some participants in the �PN = 0 group experienced a
moderate positive contingency and others experienced a mod-
erate negative contingency. Similarly, in the �PN = 0.5 group,
some participants experienced a very high contingency (+0.95),
and others a considerably lower-than-programmed contingency.
This between-subject variability is also seen in the P(O)A data
which are presented in Fig. 7.

The problems posed by the dependency of P(O) and �P on
P(I) can be critical in the interpretation of the data. Differences
in contingency ratings between conditions that have nominally
identical levels of �P or P(O), for example, may be artifacts due
to differing levels of P(I) leading to actual differences in �P or
P(O) or both. For example, Alloy and Abramson’s (1979) semi-
nal work on depressive realism used the constrained method for
controlling trial events. However, their findings have had a mixed
history of replication (see Allan et al., in press for a review). It
is possible that this mixed history reflects some experiments in
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Table 4
Mean values of P(I)A, �PA, and P(O)A for each of the six conditions in the experiment

Nominal Actual

�PN P(O|I)N P(O|∼I)N P(I)A �PA P(O|I)A P(O|∼I)A P(O)A

0
0.2 0.2 0.59 −0.01 0.17 0.18 0.18
0.5 0.5 0.64 0.02 0.53 0.51 0.52
0.8 0.8 0.64 0.03 0.80 0.77 0.79

0.5
0.55 0.05 0.67 0.51 0.55 0.04 0.39
0.75 0.25 0.62 0.48 0.77 0.29 0.58
0.95 0.45 0.68 0.57 0.95 0.38 0.77

which �P and P(O) are equivalent across comparison groups,
and some in which they are not.

Such concerns can be partially surmounted by measuring and
reporting actual mean �P and P(O) values, along with some

Fig. 5. P(I) for each participant for the three levels of P(O)N. Each symbol
represents the value for an individual participant. The data for �PN = 0 are in
(A), and the data for �PN = 0.5 are in (B).

measure of variability. If actual levels of �P and P(O) do not
vary significantly across conditions where they are supposed to
be constant, then concerns about the artifice of results is min-
imized. The constrained method for controlling trials should

Fig. 6. �PA for each participant for the three levels of P(O)N. Each symbol
represents the value for an individual participant. The data for �PN = 0 are in
(A), and the data for �PN = 0.5 are in (B). The range on the y-axis is different
in the two panels.
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Fig. 7. P(O)A for each participant for the three levels of P(O)N. Each symbol
represents the value for an individual participant. The data for �PN = 0 are in
(A), and the data for �PN = 0.5 are in (B).

be used rather than the unconstrained, as the former minimizes
variability in �P and P(O). Researchers should also consider
determining whether the removal of deviant values of �PA,
P(O)A, and/or P(I) has a noticeable effect on the mean values.
Another possibility is to instruct the participant, at the beginning
of each trial, whether or not to respond. While such “command
performance” would allow the experimenter to control P(I),
it remains an empirical question as to whether the participant
would interpret the task as one of control rather than prediction.

4.1. Reclaiming the degree of freedom from the participant

The issues discussed in this paper are similar to those raised
in the nonhuman animal conditioning literature many years ago.
The operant conditioning situation is similar to the active con-
tingency task. The organism either responds (for example, pecks

a key) or does not respond, and then the outcome (for example,
food reinforcement) occurs or does not occur. The Pavlovian
conditioning situation is similar to the passive contingency task.
A cue (for example, a tone) is presented or not, and then the
outcome (for example, food reinforcement) occurs or does not
occur. Gibbon et al. (1974) noted that operant conditioning
departs from Pavlovian conditioning in that “one degree of free-
dom – response probability – is yielded to the subject” (p. 585).
Platt and his colleagues (e.g., Platt, 1973; Galbicka and Platt,
1986; Scott and Platt, 1985) developed and evaluated a proce-
dure that provides experimental control over the probability of
a criterion operant response – percentile schedules. Part of the
approach to percentile scheduling is the online updating of out-
come schedules to maintain a relatively constant level of P(O)
and �P as response levels fluctuate. This aspect of percentile
schedules suggests an intriguing solution to the problems out-
lined in this article. An online updating algorithm for human
contingency learning has yet to be developed, but we would like
to sketch out the main lines of the idea in hopes that someone
will take up the challenge and generate a concrete solution.

Implementing the online-updating method is only possible
using a constrained algorithm as it requires a fixed schedule of
events. As responding unfolds, the current values of �PA and
P(O)A are evaluated at some fixed schedule, every ten trials, for
example, and the unused portion of the outcome schedules (i.e.,
O|I, O|∼I) are adjusted if the current �PA and P(O)A values
deviate beyond some tolerance threshold, e.g., 0.05. However,
while the concept is relatively simple, there are many practi-
cal questions regarding implementation, especially surrounding
what is an optimum scheme for reconfiguring the remaining out-
come schedules after target values deviate. Do we re-populate
both O|I and O|∼I arrays if they deviate from some threshold, or
only the most deviant of the two? Do we reconfigure the array if
either �P or P(O) values deviate from target, or only when both
do, or do we just track the most critical and assume the other
will tend to respond favourably? Do we reconfigure the entire
remaining schedule arrays, or only the next X events, where X
is some number of trials equivalent to that of the test window?

Going even further, researchers could implement a full per-
centile scheduling approach. This requires that reinforcement
delivery is contingent on responses meeting a criterion defined
with respect to some response property that can be measured
on at least an ordinal scale (e.g., a pigeon is required to peck
a key some number of times, or for some length of time). A
percentile schedule identifies a criterion response by reference
to a distribution of the organism’s recent response values. For
example, a criterion lever press may be defined as one with a
relatively long duration – for example, longer than 80% of the
durations generated by the organism’s recent lever presses. This
percentile schedule would maintain a fixed probability of the
criterion response (0.2 in this example).

The active contingency task usually requires a discrete
response, and is not amenable to a percentile schedule of out-
comes. Abramson et al. (1981) used a task that could be modified
to be compatible with a percentile schedule. In their experiment,
the response period was 5 s. A button press during the first 2 s
was considered a response and a button press during the last



Aut
ho

r's
   

pe
rs

on
al

   
co

py

S. Hannah et al. / Behavioural Processes 74 (2007) 265–273 273

3 s was considered a non-response. The response requirement
could be controlled by a percentile schedule targeted on timing
of the button press during the response period. Thus, only the
fastest 25% of responses emitted in the response period could
produce an outcome [or whatever percentage corresponding
to P(O|I)].

Percentile schedules gave the control over response probabil-
ity to the experimenter in operant conditioning. The application
of percentile schedules in the active contingency task would also
give the experimenter, not the participant, control over P(I), and
would reclaim the degree of freedom the experimenter typically
surrenders to the participant. Church (1993) made an eloquent
plea on behalf of a greater symbiosis between human and nonhu-
man based research. Although percentile schedules may be more
difficult to implement in the human contingency task than in ani-
mal learning situation, we think they offer another opportunity
for human-centered researchers to benefit from their nonhuman-
centered colleagues.
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Appendix A

P(O) = �P × P(I) + P(O| ∼ I)
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